Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Network Configuration Entity Extraction Method Based on Transformer with Multi-Head Attention Mechanism

    Yang Yang1, Zhenying Qu1, Zefan Yan1, Zhipeng Gao1,*, Ti Wang2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 735-757, 2024, DOI:10.32604/cmc.2023.045807 - 30 January 2024

    Abstract Nowadays, ensuring the quality of network services has become increasingly vital. Experts are turning to knowledge graph technology, with a significant emphasis on entity extraction in the identification of device configurations. This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms. Initially, an improved active learning approach is employed to select the most valuable unlabeled samples, which are subsequently submitted for expert labeling. This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set. Then the labeled samples are… More >

  • Open Access

    ARTICLE

    Combining Deep Learning with Knowledge Graph for Design Knowledge Acquisition in Conceptual Product Design

    Yuexin Huang1,2, Suihuai Yu1, Jianjie Chu1,*, Zhaojing Su1,3, Yangfan Cong1, Hanyu Wang1, Hao Fan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 167-200, 2024, DOI:10.32604/cmes.2023.028268 - 22 September 2023

    Abstract The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design. This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph. Specifically, the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data, and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design. Moreover, the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module, and uses multi-granularity information to overcome More >

  • Open Access

    ARTICLE

    Corpus of Carbonate Platforms with Lexical Annotations for Named Entity Recognition

    Zhichen Hu1, Huali Ren2, Jielin Jiang1, Yan Cui4, Xiumian Hu3, Xiaolong Xu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 91-108, 2023, DOI:10.32604/cmes.2022.022268 - 29 September 2022

    Abstract An obviously challenging problem in named entity recognition is the construction of the kind data set of entities. Although some research has been conducted on entity database construction, the majority of them are directed at Wikipedia or the minority at structured entities such as people, locations and organizational nouns in the news. This paper focuses on the identification of scientific entities in carbonate platforms in English literature, using the example of carbonate platforms in sedimentology. Firstly, based on the fact that the reasons for writing literature in key disciplines are likely to be provided by… More >

  • Open Access

    ARTICLE

    MEIM: A Multi-Source Software Knowledge Entity Extraction Integration Model

    Wuqian Lv1, Zhifang Liao1,*, Shengzong Liu2, Yan Zhang3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 1027-1042, 2021, DOI:10.32604/cmc.2020.012478 - 30 October 2020

    Abstract Entity recognition and extraction are the foundations of knowledge graph construction. Entity data in the field of software engineering come from different platforms and communities, and have different formats. This paper divides multi-source software knowledge entities into unstructured data, semi-structured data and code data. For these different types of data, Bi-directional Long ShortTerm Memory (Bi-LSTM) with Conditional Random Field (CRF), template matching, and abstract syntax tree are used and integrated into a multi-source software knowledge entity extraction integration model (MEIM) to extract software entities. The model can be updated continuously based on user’s feedbacks to More >

Displaying 1-10 on page 1 of 4. Per Page