Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Generating Factual Text via Entailment Recognition Task

    Jinqiao Dai, Pengsen Cheng, Jiayong Liu*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 547-565, 2024, DOI:10.32604/cmc.2024.051745 - 18 July 2024

    Abstract Generating diverse and factual text is challenging and is receiving increasing attention. By sampling from the latent space, variational autoencoder-based models have recently enhanced the diversity of generated text. However, existing research predominantly depends on summarization models to offer paragraph-level semantic information for enhancing factual correctness. The challenge lies in effectively generating factual text using sentence-level variational autoencoder-based models. In this paper, a novel model called fact-aware conditional variational autoencoder is proposed to balance the factual correctness and diversity of generated text. Specifically, our model encodes the input sentences and uses them as facts to… More >

Displaying 1-10 on page 1 of 1. Per Page