Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (156)
  • Open Access


    MVCE-Net: Multi-View Region Feature and Caption Enhancement Co-Attention Network for Visual Question Answering

    Feng Yan1, Wushouer Silamu2, Yanbing Li1,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 65-80, 2023, DOI:10.32604/cmc.2023.038177

    Abstract Visual question answering (VQA) requires a deep understanding of images and their corresponding textual questions to answer questions about images more accurately. However, existing models tend to ignore the implicit knowledge in the images and focus only on the visual information in the images, which limits the understanding depth of the image content. The images contain more than just visual objects, some images contain textual information about the scene, and slightly more complex images contain relationships between individual visual objects. Firstly, this paper proposes a model using image description for feature enhancement. This model encodes images and their descriptions separately… More >

  • Open Access


    Design of Evolutionary Algorithm Based Unequal Clustering for Energy Aware Wireless Sensor Networks

    Mohammed Altaf Ahmed1, T. Satyanarayana Murthy2, Fayadh Alenezi3, E. Laxmi Lydia4, Seifedine Kadry5,6,7, Yena Kim8, Yunyoung Nam8,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1283-1297, 2023, DOI:10.32604/csse.2023.035786

    Abstract Wireless Sensor Networks (WSN) play a vital role in several real-time applications ranging from military to civilian. Despite the benefits of WSN, energy efficiency becomes a major part of the challenging issue in WSN, which necessitate proper load balancing amongst the clusters and serves a wider monitoring region. The clustering technique for WSN has several benefits: lower delay, higher energy efficiency, and collision avoidance. But clustering protocol has several challenges. In a large-scale network, cluster-based protocols mainly adapt multi-hop routing to save energy, leading to hot spot problems. A hot spot problem becomes a problem where a cluster node nearer… More >

  • Open Access



    S. Ananda, S. Suresha, R. Dhanuskodib, D. Santhosh Kumarb,*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-9, 2020, DOI:10.5098/hmt.14.8

    Abstract The present work investigates the wall temperature prediction at supercritical pressure of water by CFD and compares the prediction of CFD and that of 11 empirical correlations available in literature. Supercritical-water heat transfer experimental data, covering a mass flux range of 400-1500 kg/m2s, heat flux range of 150-1000 kW/m2, at pressure 241 bar and diameter 10 mm tube, were obtained from literature. CFD simulations have been carried out for those operating conditions and compared with experimental data. Around 362 experimental wall temperature data of both heat transfer enhancement and heat transfer deterioration region have been taken for comparison. A visual… More >

  • Open Access



    Zijie Chena , Sanat Modaka, Massoud Kavianya,* , Richard Bonnerb

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-11, 2020, DOI:10.5098/hmt.14.1

    Abstract In dropwise condensation on vertical surface, droplets grow at nucleation sites, coalesce and reach the departing diameter. In biphilic surfaces, when the hydrophobic domain is small, the maximum droplet diameter is controlled by the shortest dimension where the droplets merge at the boundary. Through direct numerical simulations this size-effect heat transfer coefficient enhancement is calculated. Then the 1-D biphilic surface is optimized considering the size-dependent hydrophilic domain partial flooding (directly simulated as a liquid rivulet and using the capillary limit), the subcooling (heat flux) and condenser length effects. The predicted performance is in good agreement with the available experiments. More >

  • Open Access



    Wakana Hiratsukaa , Takashi Fukueb,*, Hidemi Shirakawac, Katsuyuki Nakayamad, Yasushi Koitoe

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-8, 2020, DOI:10.5098/hmt.15.16

    Abstract This paper describes a possibility of heat transfer enhancement in a mm-scale flow channel by using a combination of some projections and pulsating flow. The objective of this research is to develop a novel heat exchanger for miniaturized productions such as high-density packaging electronic equipment by applying pulsating flow to enhance heat transfer while inhibiting an increase of pressure drop. In order to evaluate the possibility of applying pulsating flow to miniature water channels, a three-dimensional flow and heat transfer analysis was performed. Heat transfer performance of a combination of pulsating water flow and a projection was investigated. The mechanism… More >

  • Open Access


    Machine Learning Prediction Models of Optimal Time for Aortic Valve Replacement in Asymptomatic Patients

    Salah Alzghoul1,*, Othman Smadi1, Ali Al Bataineh2, Mamon Hatmal3, Ahmad Alamm4

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 455-470, 2023, DOI:10.32604/iasc.2023.038338

    Abstract Currently, the decision of aortic valve replacement surgery time for asymptomatic patients with moderate-to-severe aortic stenosis (AS) is made by healthcare professionals based on the patient’s clinical biometric records. A delay in surgical aortic valve replacement (SAVR) can potentially affect patients’ quality of life. By using ML algorithms, this study aims to predict the optimal SAVR timing and determine the enhancement in moderate-to-severe AS patient survival following surgery. This study represents a novel approach that has the potential to improve decision-making and, ultimately, improve patient outcomes. We analyze data from 176 patients with moderate-to-severe aortic stenosis who had undergone or… More >

  • Open Access


    Mobile Communication Voice Enhancement Under Convolutional Neural Networks and the Internet of Things

    Jiajia Yu*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 777-797, 2023, DOI:10.32604/iasc.2023.037354

    Abstract This study aims to reduce the interference of ambient noise in mobile communication, improve the accuracy and authenticity of information transmitted by sound, and guarantee the accuracy of voice information delivered by mobile communication. First, the principles and techniques of speech enhancement are analyzed, and a fast lateral recursive least square method (FLRLS method) is adopted to process sound data. Then, the convolutional neural networks (CNNs)-based noise recognition CNN (NR-CNN) algorithm and speech enhancement model are proposed. Finally, related experiments are designed to verify the performance of the proposed algorithm and model. The experimental results show that the noise classification… More >

  • Open Access


    Cover Enhancement Method for Audio Steganography Based on Universal Adversarial Perturbations with Sample Diversification

    Jiangchuan Li, Peisong He*, Jiayong Liu, Jie Luo, Qiang Xia

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4893-4915, 2023, DOI:10.32604/cmc.2023.036819

    Abstract Steganography techniques, such as audio steganography, have been widely used in covert communication. However, the deep neural network, especially the convolutional neural network (CNN), has greatly threatened the security of audio steganography. Besides, existing adversarial attacks-based countermeasures cannot provide general perturbation, and the transferability against unknown steganography detection methods is weak. This paper proposes a cover enhancement method for audio steganography based on universal adversarial perturbations with sample diversification to address these issues. Universal adversarial perturbation is constructed by iteratively optimizing adversarial perturbation, which applies adversarial attack techniques, such as Deepfool. Moreover, the sample diversification strategy is designed to improve… More >

  • Open Access


    A Novel Approach for Security Enhancement of Data Encryption Standard

    Dawood Shah1,*, Tariq Shah1, Sajjad Shaukat Jamal2, Mohammad Mazyad Hazzazi2, Amer Aljaedi3, Adel R. Alharbi3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5073-5086, 2023, DOI:10.32604/cmc.2023.020513

    Abstract Data Encryption Standard (DES) is a symmetric key cryptosystem that is applied in different cryptosystems of recent times. However, researchers found defects in the main assembling of the DES and declared it insecure against linear and differential cryptanalysis. In this paper, we have studied the faults and made improvements in their internal structure and get the new algorithm for Improved DES. The improvement is being made in the substitution step, which is the only nonlinear component of the algorithm. This alteration provided us with great outcomes and increase the strength of DES. Accordingly, a novel good quality S-box construction scheme… More >

  • Open Access



    Marwa M. Ibrahima,*, Mohamed Mahran Kasemb,c

    Frontiers in Heat and Mass Transfer, Vol.17, No.1, pp. 1-11, 2021, DOI:10.5098/hmt.17.20

    Abstract Currently electricity generation technologies by thermal energy conversions become strong demand. The objective of this paper is to present a novel thermal study of absorber/receiver circular pipe of parabolic trough solar collector system for laminar and turbulent (k-ɛ model) fluids flow as well as two-dimensional numerical simulation is performed using CFD ANSYS FLUENT software. Significant improvements in heat transfer and velocity were discovered; the pattern of temperature distribution over the pipe absorber was displayed, and velocity vectors, pressure contours, and temperature contours were studied. The impact of increasing the heat flux towards the pipe wall is discussed. Heat transfer coefficient… More >

Displaying 1-10 on page 1 of 156. Per Page  

Share Link