Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024

    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

  • Open Access

    ARTICLE

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

    Feyza Altunbey Özbay1, Erdal Özbay2, Farhad Soleimanian Gharehchopogh3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1067-1110, 2024, DOI:10.32604/cmes.2024.054334 - 27 September 2024

    Abstract Artificial rabbits optimization (ARO) is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature. However, for solving optimization problems, the ARO algorithm shows slow convergence speed and can fall into local minima. To overcome these drawbacks, this paper proposes chaotic opposition-based learning ARO (COARO), an improved version of the ARO algorithm that incorporates opposition-based learning (OBL) and chaotic local search (CLS) techniques. By adding OBL to ARO, the convergence speed of the algorithm increases and it explores the search space better. Chaotic maps in CLS… More > Graphic Abstract

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

  • Open Access

    REVIEW

    Review of Collocation Methods and Applications in Solving Science and Engineering Problems

    Weiwu Jiang1, Xiaowei Gao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 41-76, 2024, DOI:10.32604/cmes.2024.048313 - 16 April 2024

    Abstract The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations. This paper provides a comprehensive review of collocation methods and their applications, focused on elasticity, heat conduction, electromagnetic field analysis, and fluid dynamics. The merits of the collocation method can be attributed to the need for element mesh, simple implementation, high computational efficiency, and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method. Beginning with the fundamental principles of the collocation method, the discretization process in the continuous… More >

  • Open Access

    ARTICLE

    Synergistic Swarm Optimization Algorithm

    Sharaf Alzoubi1, Laith Abualigah2,3,4,5,6,7,8,*, Mohamed Sharaf9, Mohammad Sh. Daoud10, Nima Khodadadi11, Heming Jia12

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2557-2604, 2024, DOI:10.32604/cmes.2023.045170 - 11 March 2024

    Abstract This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm (SSOA). The SSOA combines the principles of swarm intelligence and synergistic cooperation to search for optimal solutions efficiently. A synergistic cooperation mechanism is employed, where particles exchange information and learn from each other to improve their search behaviors. This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities. Furthermore, adaptive mechanisms, such as dynamic parameter adjustment and diversification strategies, are incorporated to balance exploration and exploitation. By leveraging the collaborative nature of swarm intelligence and More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Computational Intelligent Systems for Solving Complex Engineering Problems: Principles and Applications

    Danial Jahed Armaghani1,*, Ahmed Salih Mohammed2,3, Ramesh Murlidhar Bhatawdekar4, Pouyan Fakharian5, Ashutosh Kainthola6, Wael Imad Mahmood7

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2023-2027, 2024, DOI:10.32604/cmes.2023.031701 - 15 December 2023

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Computer Oriented Numerical Scheme for Solving Engineering Problems

    Mudassir Shams1, Naila Rafiq2, Nasreen Kausar3, Nazir Ahmad Mir2, Ahmad Alalyani4,*

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 689-701, 2022, DOI:10.32604/csse.2022.022269 - 04 January 2022

    Abstract In this study, we construct a family of single root finding method of optimal order four and then generalize this family for estimating of all roots of non-linear equation simultaneously. Convergence analysis proves that the local order of convergence is four in case of single root finding iterative method and six for simultaneous determination of all roots of non-linear equation. Some non-linear equations are taken from physics, chemistry and engineering to present the performance and efficiency of the newly constructed method. Some real world applications are taken from fluid mechanics, i.e., fluid permeability in biogels More >

  • Open Access

    ARTICLE

    A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems

    Andi Tang, Huan Zhou*, Tong Han, Lei Xie

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 331-364, 2022, DOI:10.32604/cmes.2021.017310 - 29 November 2021

    Abstract The sparrow search algorithm (SSA) is a newly proposed meta-heuristic optimization algorithm based on the sparrow foraging principle. Similar to other meta-heuristic algorithms, SSA has problems such as slow convergence speed and difficulty in jumping out of the local optimum. In order to overcome these shortcomings, a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy (CLSSA) is proposed in this paper. Firstly, in order to balance the exploration and exploitation ability of the algorithm, chaotic mapping is introduced to adjust the main parameters of SSA. Secondly, in order to improve… More >

Displaying 1-10 on page 1 of 7. Per Page