Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (230)
  • Open Access

    ARTICLE

    How Software Engineering Transforms Organizations: An Open and Qualitative Study on the Organizational Objectives and Motivations in Agile Transformations

    Alonso Alvarez, Borja Bordel Sánchez*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2935-2966, 2024, DOI:10.32604/cmc.2024.056990 - 18 November 2024

    Abstract Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering. Despite the impact of these transformations on organizations, they have not been extensively studied in academia. We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations, including organizations undergoing transformations (“final organizations”) and companies supporting these processes (“consultants”). The study aims to understand the motivations, objectives, and factors driving and challenging these transformations. Over 700 responses were collected to the question and categorized into 32 objectives. The findings show More >

  • Open Access

    REVIEW

    Advances in micropillar arrays in cellular biomechanics detection and tissue engineering

    XUELING HE, LINLU JIN, YIXUE QIN, JIAN ZHONG, ZHI OUYANG, YE ZENG*

    BIOCELL, Vol.48, No.11, pp. 1521-1529, 2024, DOI:10.32604/biocell.2024.055410 - 07 November 2024

    Abstract Cellular biomechanical features contributed to the occurrence and development of various physiological and pathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment and manipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depth understanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and fine-tuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip and organoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised to update the landscape of stem cell research and tissue engineering. More >

  • Open Access

    ARTICLE

    Using the Novel Wolverine Optimization Algorithm for Solving Engineering Applications

    Tareq Hamadneh1, Belal Batiha2, Omar Alsayyed3, Frank Werner4,*, Zeinab Monrazeri5, Mohammad Dehghani5,*, Kei Eguchi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2253-2323, 2024, DOI:10.32604/cmes.2024.055171 - 31 October 2024

    Abstract This paper introduces the Wolverine Optimization Algorithm (WoOA), a biomimetic method inspired by the foraging behaviors of wolverines in their natural habitats. WoOA innovatively integrates two primary strategies: scavenging and hunting, mirroring the wolverine’s adeptness in locating carrion and pursuing live prey. The algorithm’s uniqueness lies in its faithful simulation of these dual strategies, which are mathematically structured to optimize various types of problems effectively. The effectiveness of WoOA is rigorously evaluated using the Congress on Evolutionary Computation (CEC) 2017 test suite across dimensions of 10, 30, 50, and 100. The results showcase WoOA’s robust… More >

  • Open Access

    ARTICLE

    Leveraging EfficientNetB3 in a Deep Learning Framework for High-Accuracy MRI Tumor Classification

    Mahesh Thyluru Ramakrishna1, Kuppusamy Pothanaicker2, Padma Selvaraj3, Surbhi Bhatia Khan4,7,*, Vinoth Kumar Venkatesan5, Saeed Alzahrani6, Mohammad Alojail6

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 867-883, 2024, DOI:10.32604/cmc.2024.053563 - 15 October 2024

    Abstract Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current approaches predominantly rely on traditional machine learning and basic deep learning methods for image classification. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs). The limitations include inadequate accuracy, poor generalization of new data, and limited ability… More >

  • Open Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024

    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

  • Open Access

    PROCEEDINGS

    Exploration of Alloy Composition-Phase Relationships: High-Throughput Experimental Concepts and Approaches

    Liang Jiang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012946

    Abstract The Materials Genome Engineering (MGE) spurs the developments and applications of methods and tools in high-throughput experiments, integrated computation materials engineering and big data. Due to the unique importance and characteristics of structural alloys, there are great needs for MGE high throughput experimental methods and tools to enable efficient establishment of the complex alloy composition-microstructures-property relationships. To explore the alloy composition-phase relationships, several high-throughput experimental concepts are discussed. The diffusion-based high-throughput experimental concepts and approaches are highlighted from generating composition spread, automating characterization, and to illustrating systematic analysis. In particular, the evolution of diffusion multiple More >

  • Open Access

    PROCEEDINGS

    The Utilization of Neutron Diffraction and Imaging Characterization Techniques in Engineering Materials

    Lixia Yang1,*, Danqi Huang1, Zongxin Liu2, Lei Zhao1, Xuejing Shen1, Haizhou Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012690

    Abstract Neutrons possess unique advantages in the study of element and component distribution, internal damage defects, crystal structure, and multi-scale stress field evolution of engineering materials due to their strong penetrating ability, sensitivity to light elements, and non-destructive properties. This study introduces the application of neutron diffraction technology for characterizing residual stress in full-size high-speed iron wheels and neutron imaging technology for three-dimensional characterization of hydrogen distribution in titanium alloys treated with hot hydrogen.
    Residual stress plays a critical role in the design, manufacturing, assembly, and service life cycle of wheel structures. It is a significant factor… More >

  • Open Access

    PROCEEDINGS

    Uncertainty Quantification of Complex Engineering Structures Using PCE-HDMR

    Xinxin Yue1, Jian Zhang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011344

    Abstract The "curse of dimensionality" faced by high-dimensional complex engineering problems can be tackled by a set of quantitative model evaluation and analysis tools named high-dimensional model representation (HDMR) [1,2], which has attracted much attention from researchers in various fields, such as global sensitivity analysis (GSA) [3], structural reliability analysis (SRA) [4], CFD uncertainty quantification [5] and so on [6]. In this paper, a new method for uncertainty quantification is proposed. Firstly, PCE-HDMR for SRA is developed by taking advantage of the accuracy and efficiency of PCE-HDMR for modeling high-dimensional problems [7]. Secondly, the formulas for… More >

  • Open Access

    ARTICLE

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

    Feyza Altunbey Özbay1, Erdal Özbay2, Farhad Soleimanian Gharehchopogh3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1067-1110, 2024, DOI:10.32604/cmes.2024.054334 - 27 September 2024

    Abstract Artificial rabbits optimization (ARO) is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature. However, for solving optimization problems, the ARO algorithm shows slow convergence speed and can fall into local minima. To overcome these drawbacks, this paper proposes chaotic opposition-based learning ARO (COARO), an improved version of the ARO algorithm that incorporates opposition-based learning (OBL) and chaotic local search (CLS) techniques. By adding OBL to ARO, the convergence speed of the algorithm increases and it explores the search space better. Chaotic maps in CLS… More > Graphic Abstract

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

  • Open Access

    ARTICLE

    Far and Near Optimization: A New Simple and Effective Metaphor-Less Optimization Algorithm for Solving Engineering Applications

    Tareq Hamadneh1,2, Khalid Kaabneh3, Omar Alssayed4, Kei Eguchi5,*, Zeinab Monrazeri6, Mohammad Dehghani6

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1725-1808, 2024, DOI:10.32604/cmes.2024.053236 - 27 September 2024

    Abstract In this article, a novel metaheuristic technique named Far and Near Optimization (FNO) is introduced, offering versatile applications across various scientific domains for optimization tasks. The core concept behind FNO lies in integrating global and local search methodologies to update the algorithm population within the problem-solving space based on moving each member to the farthest and nearest member to itself. The paper delineates the theory of FNO, presenting a mathematical model in two phases: (i) exploration based on the simulation of the movement of a population member towards the farthest member from itself and (ii)… More >

Displaying 1-10 on page 1 of 230. Per Page