Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Blockchain-Based Game Approach to Multi-Microgrid Energy Dispatch

    Zhikang Wang#, Chengxuan Wang#, Wendi Wu, Cheng Sun, Zhengtian Wu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 845-863, 2024, DOI:10.32604/cmes.2023.029442 - 22 September 2023

    Abstract As the current global environment is deteriorating, distributed renewable energy is gradually becoming an important member of the energy internet. Blockchain, as a decentralized distributed ledger with decentralization, traceability and tamper-proof features, is an important way to achieve efficient consumption and multi-party supply of new energy. In this article, we establish a blockchain-based mathematical model of multiple microgrids and microgrid aggregators’ revenue, consider the degree of microgrid users’ preference for electricity thus increasing users’ reliance on the blockchain market, and apply the one-master-multiple-slave Stackelberg game theory to solve the energy dispatching strategy when each market More >

  • Open Access

    ARTICLE

    Edge-Cloud Computing for Scheduling the Energy Consumption in Smart Grid

    Abdulaziz Alorf*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 273-286, 2023, DOI:10.32604/csse.2023.035437 - 20 January 2023

    Abstract Nowadays, smart electricity grids are managed through advanced tools and techniques. The advent of Artificial Intelligence (AI) and network technology helps to control the energy demand. These advanced technologies can resolve common issues such as blackouts, optimal energy generation costs, and peak-hours congestion. In this paper, the residential energy demand has been investigated and optimized to enhance the Quality of Service (QoS) to consumers. The energy consumption is distributed throughout the day to fulfill the demand in peak hours. Therefore, an Edge-Cloud computing-based model is proposed to schedule the energy demand with reward-based energy consumption. More >

Displaying 1-10 on page 1 of 2. Per Page