Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Integrated Energy-Efficient Distributed Link Stability Algorithm for UAV Networks

    Altaf Hussain1, Shuaiyong Li2, Tariq Hussain3, Razaz Waheeb Attar4, Farman Ali5,*, Ahmed Alhomoud6, Babar Shah7

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2357-2394, 2024, DOI:10.32604/cmc.2024.056694 - 18 November 2024

    Abstract Ad hoc networks offer promising applications due to their ease of use, installation, and deployment, as they do not require a centralized control entity. In these networks, nodes function as senders, receivers, and routers. One such network is the Flying Ad hoc Network (FANET), where nodes operate in three dimensions (3D) using Unmanned Aerial Vehicles (UAVs) that are remotely controlled. With the integration of the Internet of Things (IoT), these nodes form an IoT-enabled network called the Internet of UAVs (IoU). However, the airborne nodes in FANET consume high energy due to their payloads and… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Heat Transfer Process and Heat Loss Analysis in Siemens CVD Reduction Furnaces

    Kunrong Shen*, Wanchun Jin, Jin Wang

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1361-1379, 2024, DOI:10.32604/fhmt.2024.057372 - 30 October 2024

    Abstract The modified Siemens method is the dominant process for the production of polysilicon, yet it is characterised by high energy consumption. Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition (CVD) reduction furnace were established, and the effects of factors such as the diameter of silicon rods, the surface temperature of silicon rods, the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation. The results show that the convective and radiant heat losses in the furnace increased… More >

  • Open Access

    ARTICLE

    A Novel Bi-Level VSC-DC Transmission Expansion Planning Method of VSC-DC for Power System Flexibility and Stability Enhancement

    Weigang Jin1, Lei Chen2,*, Shencong Zheng2, Yuqi Jiang2, Yifei Li2, Hongkun Chen2

    Energy Engineering, Vol.121, No.11, pp. 3161-3179, 2024, DOI:10.32604/ee.2024.054068 - 21 October 2024

    Abstract Investigating flexibility and stability boosting transmission expansion planning (TEP) methods can increase the renewable energy (RE) consumption of the power systems. In this study, we propose a bi-level TEP method for voltage-source-converter-based direct current (VSC-DC), focusing on flexibility and stability enhancement. First, we established the TEP framework of VSC-DC, by introducing the evaluation indices to quantify the power system flexibility and stability. Subsequently, we propose a bi-level VSC-DC TEP model: the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization (IMFO) algorithm, and the lower-level model evaluates the flexibility More >

  • Open Access

    ARTICLE

    A Two-Layer Optimal Scheduling Strategy for Rural Microgrids Accounting for Flexible Loads

    Guo Zhao1,2, Chi Zhang1,2,*, Qiyuan Ren1,2

    Energy Engineering, Vol.121, No.11, pp. 3355-3379, 2024, DOI:10.32604/ee.2024.053130 - 21 October 2024

    Abstract In the context of China’s “double carbon” goals and rural revitalization strategy, the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids. Considering the operational characteristics of rural microgrids and their impact on users, this paper establishes a two-layer scheduling model incorporating flexible loads. The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid, while the lower-layer aims to minimize the total electricity cost for rural users. An Improved Adaptive Genetic Algorithm (IAGA) is proposed to solve the model. Results show that the two-layer scheduling model with More >

  • Open Access

    ARTICLE

    A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing

    Hawazen Alzahrani1, Tarek Sheltami1, Abdulaziz Barnawi2, Muhammad Imam2,*, Ansar Yaser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4703-4728, 2024, DOI:10.32604/cmc.2024.054203 - 12 September 2024

    Abstract The Internet of Things (IoT) links various devices to digital services and significantly improves the quality of our lives. However, as IoT connectivity is growing rapidly, so do the risks of network vulnerabilities and threats. Many interesting Intrusion Detection Systems (IDSs) are presented based on machine learning (ML) techniques to overcome this problem. Given the resource limitations of fog computing environments, a lightweight IDS is essential. This paper introduces a hybrid deep learning (DL) method that combines convolutional neural networks (CNN) and long short-term memory (LSTM) to build an energy-aware, anomaly-based IDS. We test this… More >

  • Open Access

    ARTICLE

    Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty

    Juan Li1, Tingting Xu1,*, Yi Gu2, Chuang Liu1, Guiping Zhou2, Guoliang Bian1

    Energy Engineering, Vol.121, No.10, pp. 2777-2795, 2024, DOI:10.32604/ee.2024.052331 - 11 September 2024

    Abstract In fossil energy pollution is serious and the “double carbon” goal is being promoted, as a symbol of fresh energy in the electrical system, solar and wind power have an increasing installed capacity, only conventional units obviously can not solve the new energy as the main body of the scheduling problem. To enhance the system scheduling ability, based on the participation of thermal power units, incorporate the high energy-carrying load of electro-melting magnesium into the regulation object, and consider the effects on the wind unpredictability of the power. Firstly, the operating characteristics of high energy… More >

  • Open Access

    ARTICLE

    eQUEST Based Building Energy Modeling Analysis for Energy Efficiency of Buildings

    Saroj Lamichhane1, Roseline Mostafa2, Bhaskaran Gopalakrishnan2,*, Dayakar G. Devaru3

    Energy Engineering, Vol.121, No.10, pp. 2743-2767, 2024, DOI:10.32604/ee.2024.051035 - 11 September 2024

    Abstract Building energy performance is a function of numerous building parameters. In this study, sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings. Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool (eQUEST). The model is calibrated using the Normalized Mean Bias Error (NMBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)) method. The model satisfies the NMBE and CV(RMSE) criteria set by… More > Graphic Abstract

    eQUEST Based Building Energy Modeling Analysis for Energy Efficiency of Buildings

  • Open Access

    ARTICLE

    A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption

    Wentao Li1, Jiantao Liu2, Yudun Li3, Guoxin Ming1, Kaifeng Zhang1, Kun Yuan1,*

    Energy Engineering, Vol.121, No.9, pp. 2479-2503, 2024, DOI:10.32604/ee.2024.050852 - 19 August 2024

    Abstract With the large-scale development and utilization of renewable energy, industrial flexible loads, as a kind of load-side resource with strong regulation ability, provide new opportunities for the research on renewable energy consumption problem in power systems. This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning, aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy, and achieving the safe, stable and economical operation of power grids. Firstly, according to the evaluation index of renewable energy… More >

  • Open Access

    ARTICLE

    EECLP: A Wireless Sensor Networks Energy Efficient Cross-Layer Protocol

    Mohammed Kaddi1,*, Mohammed Omari2, Moamen Alnatoor1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2611-2631, 2024, DOI:10.32604/cmc.2024.052048 - 15 August 2024

    Abstract Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks (WSN). A sensor network comprises several micro-sensors deployed randomly in an area of interest. A micro-sensor is provided with an energy resource to supply electricity to all of its components. However, the disposed energy resource is limited and battery replacement is generally infeasible. With this restriction, the sensors must conserve energy to prolong their lifetime. Various energy conservation strategies for WSNs have been presented in the literature, from the application to the physical layer. Most of these solutions focus only on… More >

  • Open Access

    ARTICLE

    A Novel Optimization Approach for Energy-Efficient Multiple Workflow Scheduling in Cloud Environment

    Ambika Aggarwal1, Sunil Kumar2,3, Ashok Bhansali4, Deema Mohammed Alsekait5,*, Diaa Salama AbdElminaam6,7,8

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 953-967, 2024, DOI:10.32604/csse.2024.050406 - 17 July 2024

    Abstract Existing multiple workflow scheduling techniques focus on traditional Quality of Service (QoS) parameters such as cost, deadline, and makespan to find optimal solutions by consuming a large amount of electrical energy. Higher energy consumption decreases system efficiency, increases operational cost, and generates more carbon footprint. These major problems can lead to several problems, such as economic strain, environmental degradation, resource depletion, energy dependence, health impacts, etc. In a cloud computing environment, scheduling multiple workflows is critical in developing a strategy for energy optimization, which is an NP-hard problem. This paper proposes a novel, bi-phase Energy-Efficient… More >

Displaying 1-10 on page 1 of 98. Per Page