Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Design and Mechanical Characterization of an S-Based TPMS Hollow Isotropic Cellular Structure

    Junjian Fu1,2, Pengfei Sun1, Yixian Du1,2,*, Lei Tian1, Qihua Tian1, Xiangman Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 695-713, 2022, DOI:10.32604/cmes.2022.017842

    Abstract Cellular structures are regarded as excellent candidates for lightweight-design, load-bearing, and energy-absorbing applications. In this paper, a novel S-based TPMS hollow isotropic cellular structure is proposed with both superior load-bearing and energy-absorbing performances. The hollow cellular structure is designed with Boolean operation based on the Fischer-Koch (S) implicit triply periodic minimal surfaces (TPMS) with different level parameters. The anisotropy and effective elasticity properties of cellular structures are evaluated with the numerical homogenization method. The finite element method is further conducted to analyze the static mechanical performance of hollow cellular structure considering the size effect. The compression experiments are finally carried… More >

  • Open Access

    ARTICLE

    Optimization Design of an Embedded Multi-Cell Thin-Walled Energy Absorption Structures with Local Surface Nanocrystallization

    Kang Xu, Tong Li, Gaofei Guan, Jianlong Qu, Zhen Zhao, Xinsheng Xu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 987-1002, 2022, DOI:10.32604/cmes.2022.018128

    Abstract By means of the local surface nanocrystallization that enables to change the material on local positions, an innovative embedded multi-cell (EMC) thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper. The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design. Results reveal that after optimizing the local surface nanocrystallization layout, the specific energy absorption (SEA) is increased by 50.78% compared with the untreated counterpart. Besides, in contrast with the optimized 4-cell structure, the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%, in contrast with… More >

  • Open Access

    ARTICLE

    Statistical Model for Impact and Energy Absorption of 3D Printed Coconut Wood-PLA

    J. Kananathan1,2, M. Samykano2,*, K. Kadirgama3, D. Ramasamy2, M. M. Rahman2

    Energy Engineering, Vol.118, No.5, pp. 1305-1315, 2021, DOI:10.32604/EE.2021.016131

    Abstract Fused deposition modeling (FDM)-3D printing has been the favored technology to build functional components in various industries. The present study investigates infill percentage and infill pattern effects on the printed parts’ impact properties through the 3D printing technique using coconut wood-filled PLA composites. Mathematical models are also proposed in the present study with the aim for future property prediction. According to the ASTM standard, fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties. Statistical analysis was performed using MINITAB to validate the experimental data and model development. The experimental outcomes… More >

  • Open Access

    ARTICLE

    Energy Absorption of Thin-walled Corrugated Crash Box in Axial Crushing

    H. Ghasemnejad1, H. Hadavinia1,2, D. Marchant1, A. Aboutorabi1

    Structural Durability & Health Monitoring, Vol.4, No.1, pp. 29-46, 2008, DOI:10.3970/sdhm.2008.004.029

    Abstract In this paper the crashworthiness capabilities of thin-walled corrugated crash boxes in axial crushing relative to flat sidewall boxes from the same material are investigated. In order to achieve this, various design of corrugated aluminium alloy 6060 temper T4 crash boxes were chosen and their axial crushing behaviour under impact loading was studied by developing a theoretical model based on Super Folding Element theory and by conducting finite element analysis using LS-DYNA in ANSYS. From the theoretical and FE analysis the crush force efficiency, the specific energy absorption and the frequency and amplitude of fluctuation of the dynamic crush force… More >

  • Open Access

    ABSTRACT

    Study on Dynamic Energy Absorption Ability of Closed-cell Si-Al Foam Metals Considering Geometry Size

    Yishan Pan, Xiangfeng Lv, Zhonghua Li, XiChun Xiao

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.4, pp. 101-102, 2011, DOI:10.3970/icces.2011.016.101

    Abstract Geometry size has a great influence on energy absorption ability of closed-cell foam metals. Study on energy absorption ability of closed-cell Si-Al foam metals considering geometry size by impact experiment method. The results show that the strain and absorbing energy value are decreasing with the geometry size increasing, and also lead to the hole wall rupture or whole instability. The best height-width ratio for cube and cylinder are 1.0~1.5 and 1.0~2.0, respectively. With the increasing of material diameter, the compressive strength increasing quickly, but the strain reduces. It is clearly that height-width ratio 1.0 is better for cube and cylinder. More >

  • Open Access

    ARTICLE

    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and decreasing support layer thickness, the… More >

  • Open Access

    ARTICLE

    Modeling the Axial Splitting and Curling of Metal Tubes under Crush Loads

    W.Xu1, A.M. Waas2

    CMC-Computers, Materials & Continua, Vol.46, No.3, pp. 165-194, 2015, DOI:10.3970/cmc.2015.046.165

    Abstract Plastic deformation and splitting are two important mechanisms of energy dissipation when metal tubes undergo axial crushing. Isotropic J2 plasticity theory combined with a failure criterion is used to model axial splitting and curling of metal tubes undergoing axial crush. The proposed material model is implemented within a finite element (FE) framework using the user material subroutine VUMAT option available in the commercial code ABAQUS. Experimental results from literature are used to validate the model. The predicted splitting and curling patterns as well as the load-displacement response agree well with the experimental observations. The present material model is also used… More >

Displaying 1-10 on page 1 of 7. Per Page  

Share Link