Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    LSTM Based Spectrum Prediction for Real-Time Spectrum Access for IoT Applications

    R. Nandakumar1, Vijayakumar Ponnusamy2,*, Aman Kumar Mishra2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2805-2819, 2023, DOI:10.32604/iasc.2023.028645 - 17 August 2022

    Abstract In the Internet of Things (IoT) scenario, many devices will communicate in the presence of the cellular network; the chances of availability of spectrum will be very scary given the presence of large numbers of mobile users and large amounts of applications. Spectrum prediction is very encouraging for high traffic next-generation wireless networks, where devices/machines which are part of the Cognitive Radio Network (CRN) can predict the spectrum state prior to transmission to save their limited energy by avoiding unnecessarily sensing radio spectrum. Long short-term memory (LSTM) is employed to simultaneously predict the Radio Spectrum More >

Displaying 1-10 on page 1 of 1. Per Page