Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (150)
  • Open Access

    ARTICLE

    AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics

    Juhwan Kim, Baehoon Son, Jihyeon Yu, Joobeom Yun*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3371-3393, 2024, DOI:10.32604/cmc.2024.057234 - 18 November 2024

    Abstract Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence (AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were… More >

  • Open Access

    ARTICLE

    A Recurrent Neural Network for Multimodal Anomaly Detection by Using Spatio-Temporal Audio-Visual Data

    Sameema Tariq1, Ata-Ur- Rehman2,3, Maria Abubakar2, Waseem Iqbal4, Hatoon S. Alsagri5, Yousef A. Alduraywish5, Haya Abdullah A. Alhakbani5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2493-2515, 2024, DOI:10.32604/cmc.2024.055787 - 18 November 2024

    Abstract In video surveillance, anomaly detection requires training machine learning models on spatio-temporal video sequences. However, sometimes the video-only data is not sufficient to accurately detect all the abnormal activities. Therefore, we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data. This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data. The proposed model is trained to produce low reconstruction error… More >

  • Open Access

    ARTICLE

    Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series

    Byeongcheon Lee1, Sangmin Kim1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho1,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1275-1300, 2024, DOI:10.32604/cmc.2024.054826 - 15 October 2024

    Abstract In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets? This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) to More >

  • Open Access

    ARTICLE

    AI-Powered Image Security: Utilizing Autoencoders for Advanced Medical Image Encryption

    Fehaid Alqahtani*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1709-1724, 2024, DOI:10.32604/cmes.2024.054976 - 27 September 2024

    Abstract With the rapid advancement in artificial intelligence (AI) and its application in the Internet of Things (IoT), intelligent technologies are being introduced in the medical field, giving rise to smart healthcare systems. The medical imaging data contains sensitive information, which can easily be stolen or tampered with, necessitating secure encryption schemes designed specifically to protect these images. This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images. The proposed scheme utilizes an artificial intelligence-based autoencoder to compress high-resolution medical images and to facilitate fast encryption… More >

  • Open Access

    ARTICLE

    Enhancing Arabic Cyberbullying Detection with End-to-End Transformer Model

    Mohamed A. Mahdi1, Suliman Mohamed Fati2,*, Mohamed A.G. Hazber1, Shahanawaj Ahamad3, Sawsan A. Saad4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1651-1671, 2024, DOI:10.32604/cmes.2024.052291 - 27 September 2024

    Abstract Cyberbullying, a critical concern for digital safety, necessitates effective linguistic analysis tools that can navigate the complexities of language use in online spaces. To tackle this challenge, our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers (BERT) base model (cased), originally pretrained in English. This model is uniquely adapted to recognize the intricate nuances of Arabic online communication, a key aspect often overlooked in conventional cyberbullying detection methods. Our model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media (SM) tweets showing a notable… More >

  • Open Access

    ARTICLE

    Anomaly-Based Intrusion Detection Model Using Deep Learning for IoT Networks

    Muaadh A. Alsoufi1,*, Maheyzah Md Siraj1, Fuad A. Ghaleb2, Muna Al-Razgan3, Mahfoudh Saeed Al-Asaly3, Taha Alfakih3, Faisal Saeed2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 823-845, 2024, DOI:10.32604/cmes.2024.052112 - 20 August 2024

    Abstract The rapid growth of Internet of Things (IoT) devices has brought numerous benefits to the interconnected world. However, the ubiquitous nature of IoT networks exposes them to various security threats, including anomaly intrusion attacks. In addition, IoT devices generate a high volume of unstructured data. Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks, such as resource constraints and heterogeneous data sources. Given the unpredictable nature of network technologies and diverse intrusion methods, conventional machine-learning approaches seem to lack efficiency. Across numerous research domains, deep learning techniques have demonstrated… More >

  • Open Access

    ARTICLE

    Anomaly Detection in Imbalanced Encrypted Traffic with Few Packet Metadata-Based Feature Extraction

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 585-607, 2024, DOI:10.32604/cmes.2024.051221 - 20 August 2024

    Abstract In the IoT (Internet of Things) domain, the increased use of encryption protocols such as SSL/TLS, VPN (Virtual Private Network), and Tor has led to a rise in attacks leveraging encrypted traffic. While research on anomaly detection using AI (Artificial Intelligence) is actively progressing, the encrypted nature of the data poses challenges for labeling, resulting in data imbalance and biased feature extraction toward specific nodes. This study proposes a reconstruction error-based anomaly detection method using an autoencoder (AE) that utilizes packet metadata excluding specific node information. The proposed method omits biased packet metadata such as… More >

  • Open Access

    ARTICLE

    CAEFusion: A New Convolutional Autoencoder-Based Infrared and Visible Light Image Fusion Algorithm

    Chun-Ming Wu1, Mei-Ling Ren2,*, Jin Lei2, Zi-Mu Jiang3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2857-2872, 2024, DOI:10.32604/cmc.2024.053708 - 15 August 2024

    Abstract To address the issues of incomplete information, blurred details, loss of details, and insufficient contrast in infrared and visible image fusion, an image fusion algorithm based on a convolutional autoencoder is proposed. The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map. A multi-scale convolution attention module is suggested to enhance the communication of feature information. At the same time, the feature transformation module is introduced to learn more robust feature representations, aiming to preserve the integrity of… More >

  • Open Access

    ARTICLE

    Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks

    Ayesha Khaliq1, Salman Afsar Awan1, Fahad Ahmad2,*, Muhammad Azam Zia1, Muhammad Zafar Iqbal3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3221-3242, 2024, DOI:10.32604/cmc.2024.053488 - 15 August 2024

    Abstract The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity. Current approaches in Extractive Text Summarization (ETS) leverage the modeling of inter-sentence relationships, a task of paramount importance in producing coherent summaries. This study introduces an innovative model that integrates Graph Attention Networks (GATs) with Transformer-based Bidirectional Encoder Representations from Transformers (BERT) and Latent Dirichlet Allocation (LDA), further enhanced by Term Frequency-Inverse Document Frequency (TF-IDF) values, to improve sentence selection by capturing comprehensive topical information. Our… More >

  • Open Access

    ARTICLE

    Masked Autoencoders as Single Object Tracking Learners

    Chunjuan Bo1,*, Xin Chen2, Junxing Zhang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1105-1122, 2024, DOI:10.32604/cmc.2024.052329 - 18 July 2024

    Abstract Significant advancements have been witnessed in visual tracking applications leveraging ViT in recent years, mainly due to the formidable modeling capabilities of Vision Transformer (ViT). However, the strong performance of such trackers heavily relies on ViT models pretrained for long periods, limiting more flexible model designs for tracking tasks. To address this issue, we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders, called TrackMAE. During pretraining, we employ two shared-parameter ViTs, serving as the appearance encoder and motion encoder, respectively. The appearance encoder encodes randomly masked image data,… More >

Displaying 1-10 on page 1 of 150. Per Page