Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction

    Duy Quang Tran1, Huy Q. Tran2,*, Minh Van Nguyen3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3585-3602, 2024, DOI:10.32604/cmc.2024.047760 - 26 March 2024

    Abstract With the advancement of artificial intelligence, traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality. Traffic volume is an influential parameter for planning and operating traffic structures. This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems. A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process. The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal… More >

  • Open Access

    ARTICLE

    Extraction of Strain Characteristic Signals from Wind Turbine Blades Based on EEMD-WT

    Jin Wang1, Zhen Liu1,*, Ying Wang1, Caifeng Wen2,3, Jianwen Wang2,3

    Energy Engineering, Vol.120, No.5, pp. 1149-1162, 2023, DOI:10.32604/ee.2023.025209 - 20 February 2023

    Abstract Analyzing the strain signal of wind turbine blade is the key to studying the load of wind turbine blade, so as to ensure the safe and stable operation of wind turbine in natural environment. The strain signal of the wind turbine blade under continuous crosswind state has typical non-stationary and unsteady characteristics. The strain signal contains a lot of noise, which makes the analysis error. Therefore, it is very important to denoise and extract features of measured signals before signal analysis. In this paper, the joint algorithm of ensemble empirical mode decomposition (EEMD) and wavelet… More >

  • Open Access

    ARTICLE

    A Hybrid BPNN-GARF-SVR Prediction Model Based on EEMD for Ship Motion

    Hao Han, Wei Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1353-1370, 2023, DOI:10.32604/cmes.2022.021494 - 31 August 2022

    Abstract Accurate prediction of ship motion is very important for ensuring marine safety, weapon control, and aircraft carrier landing, etc. Ship motion is a complex time-varying nonlinear process which is affected by many factors. Time series analysis method and many machine learning methods such as neural networks, support vector machines regression (SVR) have been widely used in ship motion predictions. However, these single models have certain limitations, so this paper adopts a multi-model prediction method. First, ensemble empirical mode decomposition (EEMD) is used to remove noise in ship motion data. Then the random forest (RF) prediction More >

  • Open Access

    ARTICLE

    Early Detection of Heartbeat from Multimodal Data Using RPA Learning with KDNN-SAE

    A. K. S. Saranya1,*, T. Jaya2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 545-562, 2023, DOI:10.32604/csse.2023.029975 - 16 August 2022

    Abstract Heartbeat detection stays central to cardiovascular an electrocardiogram (ECG) is used to help with disease diagnosis and management. Existing Convolutional Neural Network (CNN)-based methods suffer from the less generalization problem thus; the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed. In contrast, this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders (KDNN-SAE) that computes the disease before the exact heart rate by combining features from multiple ECG Signals. Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error… More >

  • Open Access

    ARTICLE

    Arrhythmia Prediction on Optimal Features Obtained from the ECG as Images

    Fuad A. M. Al-Yarimi*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 129-142, 2023, DOI:10.32604/csse.2023.024297 - 01 June 2022

    Abstract A critical component of dealing with heart disease is real-time identification, which triggers rapid action. The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythmias. Recent contributions to cardiac arrhythmia prediction using supervised learning approaches generally involve the use of demographic features (electronic health records), signal features (electrocardiogram features as signals), and temporal features. Since the signal of the electrical activity of the heartbeat is very sensitive to differences between high and low heartbeats, it is possible to detect some of the irregularities in the early stages of arrhythmia. More >

  • Open Access

    ARTICLE

    Multi-Stream CNN-Based Personal Recognition Method Using Surface Electromyogram for 5G Security

    Jin Su Kim1, Min-Gu Kim1, Jae Myung Kim1,2, Sung Bum Pan1,2,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2997-3007, 2022, DOI:10.32604/cmc.2022.026572 - 29 March 2022

    Abstract As fifth generation technology standard (5G) technology develops, the possibility of being exposed to the risk of cyber-attacks that exploits vulnerabilities in the 5G environment is increasing. The existing personal recognition method used for granting permission is a password-based method, which causes security problems. Therefore, personal recognition studies using bio-signals are being conducted as a method to access control to devices. Among bio-signal, surface electromyogram (sEMG) can solve the existing personal recognition problem that was unable to the modification of registered information owing to the characteristic changes in its signal according to the performed operation.… More >

  • Open Access

    ARTICLE

    Fault Analysis of Wind Power Rolling Bearing Based on EMD Feature Extraction

    Debiao Meng1,2,3,*, Hongtao Wang1, Shiyuan Yang1, Zhiyuan Lv1, Zhengguo Hu1, Zihao Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 543-558, 2022, DOI:10.32604/cmes.2022.018123 - 29 November 2021

    Abstract In a wind turbine, the rolling bearing is the critical component. However, it has a high failure rate. Therefore, the failure analysis and fault diagnosis of wind power rolling bearings are very important to ensure the high reliability and safety of wind power equipment. In this study, the failure form and the corresponding reason for the failure are discussed firstly. Then, the natural frequency and the characteristic frequency are analyzed. The Empirical Mode Decomposition (EMD) algorithm is used to extract the characteristics of the vibration signal of the rolling bearing. Moreover, the eigenmode function is More >

  • Open Access

    ARTICLE

    Fusion Fault Diagnosis Approach to Rolling Bearing with Vibrational and Acoustic Emission Signals

    Junyu Chen1, Yunwen Feng1,*, Cheng Lu1,2, Chengwei Fei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 1013-1027, 2021, DOI:10.32604/cmes.2021.016980 - 08 October 2021

    Abstract As the key component in aeroengine rotor systems, the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems. In order to monitor rolling bearing conditions, a fusion fault diagnosis method, namely empirical mode decomposition (EMD)-Mahalanobis distance (E2MD) and improved wavelet threshold (IWT) (E2MD-IWT) for vibrational signals and acoustic emission (AE) signals is developed to improve the diagnostic accuracy of rolling bearings. The IWT method is proposed with a hard wavelet threshold and a soft wavelet threshold. Moreover, it is shown to be effective through numerical simulation. EMD is utilized… More >

  • Open Access

    ARTICLE

    Electricity Demand Time Series Forecasting Based on Empirical Mode Decomposition and Long Short-Term Memory

    Saman Taheri1, Behnam Talebjedi2,*, Timo Laukkanen2

    Energy Engineering, Vol.118, No.6, pp. 1577-1594, 2021, DOI:10.32604/EE.2021.017795 - 10 September 2021

    Abstract Load forecasting is critical for a variety of applications in modern energy systems. Nonetheless, forecasting is a difficult task because electricity load profiles are tied with uncertain, non-linear, and non-stationary signals. To address these issues, long short-term memory (LSTM), a machine learning algorithm capable of learning temporal dependencies, has been extensively integrated into load forecasting in recent years. To further increase the effectiveness of using LSTM for demand forecasting, this paper proposes a hybrid prediction model that incorporates LSTM with empirical mode decomposition (EMD). EMD algorithm breaks down a load time-series data into several sub-series… More >

  • Open Access

    ARTICLE

    Threshold Parameters Selection for Empirical Mode Decomposition-Based EMG Signal Denoising

    Hassan Ashraf1, Asim Waris1,*, Syed Omer Gilani1, Muhammad Umair Tariq1, Hani Alquhayz2

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 799-815, 2021, DOI:10.32604/iasc.2021.014765 - 01 March 2021

    Abstract Empirical Mode Decomposition (EMD) is a data-driven and fully adaptive signal decomposition technique to decompose a signal into its Intrinsic Mode Functions (IMF). EMD has attained great attention due to its capabilities to process a signal in the frequency-time domain without altering the signal into the frequency domain. EMD-based signal denoising techniques have shown great potential to denoise nonlinear and nonstationary signals without compromising the signal’s characteristics. The denoising procedure comprises three steps, i.e., signal decomposition, IMF thresholding, and signal reconstruction. Thresholding is performed to assess which IMFs contain noise. In this study, Interval Thresholding… More >

Displaying 1-10 on page 1 of 13. Per Page