Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Heuristics-Based Cost Model for Scientific Workflow Scheduling in Cloud

    Ehab Nabiel Al-Khanak1,*, Sai Peck Lee2, Saif Ur Rehman Khan3, Navid Behboodian4, Osamah Ibrahim Khalaf5, Alexander Verbraeck6, Hans van Lint1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3265-3282, 2021, DOI:10.32604/cmc.2021.015409 - 01 March 2021

    Abstract Scientific Workflow Applications (SWFAs) can deliver collaborative tools useful to researchers in executing large and complex scientific processes. Particularly, Scientific Workflow Scheduling (SWFS) accelerates the computational procedures between the available computational resources and the dependent workflow jobs based on the researchers’ requirements. However, cost optimization is one of the SWFS challenges in handling massive and complicated tasks and requires determining an approximate (near-optimal) solution within polynomial computational time. Motivated by this, current work proposes a novel SWFS cost optimization model effective in solving this challenge. The proposed model contains three main stages: (i) scientific workflow… More >

  • Open Access

    ARTICLE

    Empirical Comparisons of Deep Learning Networks on Liver Segmentation

    Yi Shen1, Victor S. Sheng1, 2, *, Lei Wang1, Jie Duan1, Xuefeng Xi1, Dengyong Zhang3, Ziming Cui1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1233-1247, 2020, DOI:10.32604/cmc.2020.07450

    Abstract Accurate segmentation of CT images of liver tumors is an important adjunct for the liver diagnosis and treatment of liver diseases. In recent years, due to the great improvement of hard device, many deep learning based methods have been proposed for automatic liver segmentation. Among them, there are the plain neural network headed by FCN and the residual neural network headed by Resnet, both of which have many variations. They have achieved certain achievements in medical image segmentation. In this paper, we firstly select five representative structures, i.e., FCN, U-Net, Segnet, Resnet and Densenet, to More >

  • Open Access

    ARTICLE

    An Empirical Comparison on Multi-Target Regression Learning

    Xuefeng Xi1, Victor S. Sheng1,2,*, Binqi Sun2, Lei Wang1, Fuyuan Hu1

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 185-198, 2018, DOI:10.3970/cmc.2018.03694

    Abstract Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables. It has received relatively small attention from the Machine Learning community. However, multi-target regression exists in many real-world applications. In this paper we conduct extensive experiments to investigate the performance of three representative multi-target regression learning algorithms (i.e. Multi-Target Stacking (MTS), Random Linear Target Combination (RLTC), and Multi-Objective Random Forest (MORF)), comparing the baseline single-target learning. Our experimental results show that all three multi-target regression learning algorithms do improve the performance of the single-target More >

Displaying 1-10 on page 1 of 3. Per Page