Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A PERT-BiLSTM-Att Model for Online Public Opinion Text Sentiment Analysis

    Mingyong Li, Zheng Jiang*, Zongwei Zhao, Longfei Ma

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2387-2406, 2023, DOI:10.32604/iasc.2023.037900 - 21 June 2023

    Abstract As an essential category of public event management and control, sentiment analysis of online public opinion text plays a vital role in public opinion early warning, network rumor management, and netizens’ personality portraits under massive public opinion data. The traditional sentiment analysis model is not sensitive to the location information of words, it is difficult to solve the problem of polysemy, and the learning representation ability of long and short sentences is very different, which leads to the low accuracy of sentiment classification. This paper proposes a sentiment analysis model PERT-BiLSTM-Att for public opinion text… More >

  • Open Access

    ARTICLE

    Twitter Data Analysis Using Hadoop and ‘R’ and Emotional Analysis Using Optimized SVNN

    K. Sailaja Kumar*, H. K. Manoj, D. Evangelin Geetha

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 485-499, 2023, DOI:10.32604/csse.2023.025390 - 01 June 2022

    Abstract Standalone systems cannot handle the giant traffic loads generated by Twitter due to memory constraints. A parallel computational environment provided by Apache Hadoop can distribute and process the data over different destination systems. In this paper, the Hadoop cluster with four nodes integrated with RHadoop, Flume, and Hive is created to analyze the tweets gathered from the Twitter stream. Twitter stream data is collected relevant to an event/topic like IPL- 2015, cricket, Royal Challengers Bangalore, Kohli, Modi, from May 24 to 30, 2016 using Flume. Hive is used as a data warehouse to store the… More >

  • Open Access

    ARTICLE

    Emotional Analysis of Arabic Saudi Dialect Tweets Using a Supervised Learning Approach

    Abeer A. AlFutamani, Heyam H. Al-Baity*

    Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 89-109, 2021, DOI:10.32604/iasc.2021.016555 - 12 May 2021

    Abstract Social media sites produce a large amount of data and offer a highly competitive advantage for companies when they can benefit from and address data, as data provides a deeper understanding of clients and their needs. This understanding of clients helps in effectively making the correct decisions within the company, based on data obtained from social media websites. Thus, sentiment analysis has become a key tool for understanding that data. Sentiment analysis is a research area that focuses on analyzing people’s emotions and opinions to identify the polarity (e.g., positive or negative) of a given… More >

  • Open Access

    ARTICLE

    Influence of Cultural Alienation on Happiness of Overseas Students: Mediating Role of Stress Relief and Regulating Role of Cultural Intelligence

    Xiaoxia Zhu1,2,*, Xu Guo2, Yishu Teng1,*, John Gershenson3

    International Journal of Mental Health Promotion, Vol.23, No.2, pp. 289-302, 2021, DOI:10.32604/IJMHP.2021.013691 - 30 April 2021

    Abstract When the global outbreak of new coronary pneumonia broke out in 2020, online public opinion events triggered by cultural differences among overseas students had come into the public view. To further explore the relationship between the cultural alienation of overseas students and their own happiness, this study takes visualization and analysis of positive, negative sentiment analysis of Weibo netizens’ comment data in the “Xu Kexin Incident” as the starting point, on the basis of introducing cultural alienation, stress relief methods, and cultural intelligence, combining gender and social ability, social relations and other individual attributes, designed… More >

Displaying 1-10 on page 1 of 4. Per Page