Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Pioneering Micro-Scale Mapping of Urban CO Emissions from Fossil Fuels with GIS

    Loghman Khodakarami*

    Revue Internationale de Géomatique, Vol.33, pp. 221-246, 2024, DOI:10.32604/rig.2024.050908 - 15 July 2024

    Abstract Urban areas globally are escalating contributors to carbon dioxide (CO) emissions, challenging sustainable development. This study proposes a novel micro-scale approach utilizing GIS to quantify CO emission spatial distribution, enhancing urban sustainability assessment. Employing a “bottom-up” methodology, emissions were calculated for various sources, revealing Isfahan’s urban area emits 13,855,525 tons of CO annually. Major contributors include stationary and mobile sources such as power plants (50.61%), road and rail transport (17.18%), and residential sectors (21.78%). Spatial distribution mapping showed that 81.68% of CO emissions originate from stationary sources, notably power plants. Furthermore, mobile sources, including road More >

  • Open Access

    ARTICLE

    Mitigating Carbon Emissions: A Comprehensive Analysis of Transitioning to Hydrogen-Powered Plants in Japan’s Energy Landscape Post-Fukushima

    Nugroho Agung Pambudi1,2,4,*, Andrew Chapman, Alfan Sarifudin1,3, Desita Kamila Ulfa4, Iksan Riva Nanda5

    Energy Engineering, Vol.121, No.5, pp. 1143-1159, 2024, DOI:10.32604/ee.2024.047555 - 30 April 2024

    Abstract One of the impacts of the Fukushima disaster was the shutdown of all nuclear power plants in Japan, reaching zero production in 2015. In response, the country started importing more fossil energy including coal, oil, and natural gas to fill the energy gap. However, this led to a significant increase in carbon emissions, hindering the efforts to reduce its carbon footprint. In the current situation, Japan is actively working to balance its energy requirements with environmental considerations, including the utilization of hydrogen fuel. Therefore, this paper aims to explore the feasibility and implications of using… More >

  • Open Access

    ARTICLE

    A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine

    Lingjie Zhao, Cong Li*

    Energy Engineering, Vol.121, No.5, pp. 1363-1380, 2024, DOI:10.32604/ee.2024.046918 - 30 April 2024

    Abstract The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder, thereby reducing NOx emissions. To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions, this study will perform a one-dimensional simulation of the performance of a marine diesel engine, as well as a three-dimensional simulation of the combustion in the cylinder. A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object. The chassis dynamometer and other related equipment are used to… More >

  • Open Access

    ARTICLE

    Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk

    Dong Pan1, Xu Gui1, Jiayin Xu1, Yuming Shen1, Haoran Xu2, Yinghao Ma2,*

    Energy Engineering, Vol.121, No.5, pp. 1309-1328, 2024, DOI:10.32604/ee.2024.046464 - 30 April 2024

    Abstract With the increasing urgency of the carbon emission reduction task, the generation expansion planning process needs to add carbon emission risk constraints, in addition to considering the level of power adequacy. However, methods for quantifying and assessing carbon emissions and operational risks are lacking. It results in excessive carbon emissions and frequent load-shedding on some days, although meeting annual carbon emission reduction targets. First, in response to the above problems, carbon emission and power balance risk assessment indicators and assessment methods, were proposed to quantify electricity abundance and carbon emission risk level of power planning… More >

  • Open Access

    ARTICLE

    Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation

    Hongsheng Su, Lixia Dong*, Xiaoying Yu, Kai Liu

    Energy Engineering, Vol.121, No.4, pp. 973-986, 2024, DOI:10.32604/ee.2023.043497 - 26 March 2024

    Abstract Time based maintenance (TBM) and condition based maintenance (CBM) are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes, however, these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues. Hence, this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue. Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state, a stochastic differential equation model (SDE) and More > Graphic Abstract

    Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation

  • Open Access

    ARTICLE

    Effects of I-EGR and Pre-Injection on Performance of Gasoline Compression Ignition (GCI) at Low-Load Condition

    Binbin Yang1,*, Leilei Liu1, Yan Zhang1, Jingyu Gong1, Fan Zhang2, Tiezhu Zhang1

    Energy Engineering, Vol.120, No.10, pp. 2233-2250, 2023, DOI:10.32604/ee.2023.028898 - 28 September 2023

    Abstract Gasoline compression ignition (GCI) has been considered as a promising combustion concept to yield ultra-low NOX and soot emissions while maintaining high thermal efficiency. However, how to improve the low-load performance becomes an urgent issue to be solved. In this paper, a GCI engine model was built to investigate the effects of internal EGR (i-EGR) and pre-injection on in-cylinder temperature, spatial concentration of mixture and OH radical, combustion and emission characteristics, and the control strategy for improving the combustion performance was further explored. The results showed an obvious expansion of the zone with an equivalence ratio… More >

  • Open Access

    ARTICLE

    Investigating the Effects of Eichhornia Crassipes Biodiesel and Liquefied Petroleum Gas on the Performance and Emissions of a Dual-Fuel Engine

    Hawraa S. Mohammed*, Mahmoud A. Mashkour

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2329-2343, 2023, DOI:10.32604/fdmp.2023.026890 - 16 May 2023

    Abstract This study considers the effect of Eichhornia Crassipes Biodiesel (ECB) blends on the performances, combustion, and emission characteristics of a direct injection compression ignition engine operated in a dual-fuel mode (DFM) and equipped with an Exhaust gas recirculation technique (EGR). In particular, a single-cylinder, four-stroke, water-cooled diesel engine was utilized and four modes of fuel operation were considered: mode I, the engine operated with an ordinary diesel fuel; mode II, the engine operated with the addition of 2.4 L/min of liquefied petroleum gas (LPG) and 20% EGR; mode III, 20% ECB with 2.4 L/min LPG… More >

  • Open Access

    ARTICLE

    Regional Renewable Energy Optimization Based on Economic Benefits and Carbon Emissions

    Cun Wei1, Yunpeng Zhao2,*, Mingyang Cong1, Zhigang Zhou1,*, Jingzan Yan3, Ruixin Wang1, Zhuoyang Li1, Jing Liu1

    Energy Engineering, Vol.120, No.6, pp. 1465-1484, 2023, DOI:10.32604/ee.2023.026337 - 03 April 2023

    Abstract With increasing renewable energy utilization, the industry needs an accurate tool to select and size renewable energy equipment and evaluate the corresponding renewable energy plans. This study aims to bring new insights into sustainable and energy-efficient urban planning by developing a practical method for optimizing the production of renewable energy and carbon emission in urban areas. First, we provide a detailed formulation to calculate the renewable energy demand based on total energy demand. Second, we construct a dual-objective optimization model that represents the life cycle cost and carbon emission of renewable energy systems, after which More >

  • Open Access

    ARTICLE

    Analysis of the Emissions and Performance of a Diesel Engine Using Pumpkin Seed Oil Methyl Ester with Different Injection Pressures

    Surendrababu Kuppusamy1,*, Prabhahar Muthuswamy2, Muthurajan Kumarasamy3, Sendilvelan Subramanian4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1003-1014, 2023, DOI:10.32604/fdmp.2022.022262 - 02 November 2022

    Abstract Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel. In this study, the performance, emission, and combustion features of a mono cylinder DI diesel engine are assessed using 20% Pumpkin seed methyl ester (PSOME20) and considering varying injection pressures (200, 220, 240, and 260 bar). The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel. The findings demonstrate that the Brake Thermal Efficiency (BTE) of PSOME20 can be raised by 1.68%, and the More > Graphic Abstract

    Analysis of the Emissions and Performance of a Diesel Engine Using Pumpkin Seed Oil Methyl Ester with Different Injection Pressures

  • Open Access

    ARTICLE

    Exergo-Environmental Study of a Recent Organic Solar Hybrid Heat Pump

    Rabeb Toujani, Nahla Bouaziz*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 991-1001, 2023, DOI:10.32604/fdmp.2022.022239 - 02 November 2022

    Abstract A hybrid heat pump (compression/absorption) with an integrated thermal photovoltaic unit is studied. The considered working fluids are organic mixtures: R245fa/DMAC and R236fa/DMAC, chosen for their low Global Warming Potential. The main objective is the optimization of energy efficiency in order to minimize the environmental impact through the implementation of a sustainable strategy. It is shown that Exergy Analysis itself is a valuable tool in energy integration. Within the imposed framework of minimizing total annual costs, entropy analysis can be instrumental in determining the optimal plant concept, optimizing energy conversion and use, and improving profitability. More >

Displaying 1-10 on page 1 of 29. Per Page