Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Hafza Ayesha Siddiqa1, Muhammad Irfan1, Saadullah Farooq Abbasi2,*, Wei Chen1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1759-1778, 2023, DOI:10.32604/cmc.2023.041970 - 29 November 2023

    Abstract Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual… More >

  • Open Access

    ARTICLE

    Human Emotions Classification Using EEG via Audiovisual Stimuli and AI

    Abdullah A Asiri1, Akhtar Badshah2, Fazal Muhammad3,*, Hassan A Alshamrani1, Khalil Ullah4, Khalaf A Alshamrani1, Samar Alqhtani5, Muhammad Irfan6, Hanan Talal Halawani7, Khlood M Mehdar8

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5075-5089, 2022, DOI:10.32604/cmc.2022.031156 - 28 July 2022

    Abstract Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response… More >

  • Open Access

    ARTICLE

    Classification of Arrhythmia Based on Convolutional Neural Networks and Encoder-Decoder Model

    Jian Liu1,*, Xiaodong Xia1, Chunyang Han2, Jiao Hui3, Jim Feng4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 265-278, 2022, DOI:10.32604/cmc.2022.029227 - 18 May 2022

    Abstract As a common and high-risk type of disease, heart disease seriously threatens people’s health. At the same time, in the era of the Internet of Thing (IoT), smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases. Therefore, the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases. In this paper, we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network (CNN) and Encoder-Decoder model. The model uses Long Short-Term More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization Algorithm for Signals Classification of Electroencephalography Channels

    Marwa M. Eid1,*, Fawaz Alassery2, Abdelhameed Ibrahim3, Mohamed Saber4

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4627-4641, 2022, DOI:10.32604/cmc.2022.024043 - 14 January 2022

    Abstract Digital signal processing of electroencephalography (EEG) data is now widely utilized in various applications, including motor imagery classification, seizure detection and prediction, emotion classification, mental task classification, drug impact identification and sleep state classification. With the increasing number of recorded EEG channels, it has become clear that effective channel selection algorithms are required for various applications. Guided Whale Optimization Method (Guided WOA), a suggested feature selection algorithm based on Stochastic Fractal Search (SFS) technique, evaluates the chosen subset of channels. This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces More >

  • Open Access

    ARTICLE

    Overhauled Approach to Effectuate the Amelioration in EEG Analysis

    S. Beatrice*, Janaki Meena

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 331-347, 2022, DOI:10.32604/iasc.2022.023666 - 05 January 2022

    Abstract Discovering the information about several disorders prevailing in brain and neurology is by no means a new scientific technique. A neurological disorder of any human being can be analyzed using EEG (Electroencephalography) signal from the electrode’s output. Epilepsy (spontaneous recurrent seizure) detection is usually carried out by the physicians using a visual scanning of the signals produced by EEG, which is onerous and may be inaccurate. EEG signal is often used to determine epilepsy, for its merits, such as non-invasive, portable, and economical, can exhibit superior temporal tenacity. This paper surveys the existing artifact removal… More >

  • Open Access

    ARTICLE

    Fuzzy-Based Automatic Epileptic Seizure Detection Framework

    Aayesha1, Muhammad Bilal Qureshi2, Muhammad Afzaal3, Muhammad Shuaib Qureshi4, Jeonghwan Gwak5,6,7,8,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5601-5630, 2022, DOI:10.32604/cmc.2022.020348 - 11 October 2021

    Abstract Detection of epileptic seizures on the basis of Electroencephalogram (EEG) recordings is a challenging task due to the complex, non-stationary and non-linear nature of these biomedical signals. In the existing literature, a number of automatic epileptic seizure detection methods have been proposed that extract useful features from EEG segments and classify them using machine learning algorithms. Some characterizing features of epileptic and non-epileptic EEG signals overlap; therefore, it requires that analysis of signals must be performed from diverse perspectives. Few studies analyzed these signals in diverse domains to identify distinguishing characteristics of epileptic EEG signals.… More >

  • Open Access

    ARTICLE

    Research and Development of a Brain-Controlled Wheelchair for Paralyzed Patients

    Mohammad Monirujjaman Khan1,*, Shamsun Nahar Safa1, Minhazul Hoque Ashik1, Mehedi Masud2, Mohammed A. AlZain3

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 49-64, 2021, DOI:10.32604/iasc.2021.016077 - 26 July 2021

    Abstract Smart wheelchairs play a significant role in supporting disabled people. Individuals with motor function impairments due to some disorders such as strokes or multiple sclerosis face frequent moving difficulties. Hence, they need constant support from an assistant. This paper presents a brain-controlled wheelchair model to assist disabled and paralyzed patients. The wheelchair is controlled by interpreting Electroencephalogram (EEG) signals, also known as brain waves. In the EEG technique, an electrode cap is positioned on the user’s scalp to receive EEG signals, which are detected and transformed by the Arduino microcontroller into motion commands, which drive More >

  • Open Access

    ARTICLE

    Integrated CWT-CNN for Epilepsy Detection Using Multiclass EEG Dataset

    Sidra Naseem1, Kashif Javed1, Muhammad Jawad Khan1, Saddaf Rubab2, Muhammad Attique Khan3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 471-486, 2021, DOI:10.32604/cmc.2021.018239 - 04 June 2021

    Abstract Electroencephalography is a common clinical procedure to record brain signals generated by human activity. EEGs are useful in Brain controlled interfaces and other intelligent Neuroscience applications, but manual analysis of these brainwaves is complicated and time-consuming even for the experts of neuroscience. Various EEG analysis and classification techniques have been proposed to address this problem however, the conventional classification methods require identification and learning of specific EEG characteristics beforehand. Deep learning models can learn features from data without having in depth knowledge of data and prior feature identification. One of the great implementations of deep… More >

  • Open Access

    ARTICLE

    Machine Learning Based Framework for Classification of Children with ADHD and Healthy Controls

    Anshu Parashar*, Nidhi Kalra, Jaskirat Singh, Raman Kumar Goyal

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 669-682, 2021, DOI:10.32604/iasc.2021.017478 - 20 April 2021

    Abstract Electrophysiological (EEG) signals provide good temporal resolution and can be effectively used to assess and diagnose children with Attention Deficit Hyperactivity Disorder (ADHD). This study aims to develop a machine learning model to classify children with ADHD and Healthy Controls. In this study, EEG signals captured under cognitive tasks were obtained from an open-access database of 60 children with ADHD and 60 Healthy Controls children of similar age. The regional contributions towards attaining higher accuracy are identified and further tested using three classifiers: AdaBoost, Random Forest and Support Vector Machine. The EEG data from 19 More >

  • Open Access

    ARTICLE

    Cognitive Skill Enhancement System Using Neuro-Feedback for ADHD Patients

    Muhammad Usman Ghani Khan1,2, Zubaira Naz1, Javeria Khan1, Tanzila Saba3, Ibrahim Abunadi3, Amjad Rehman3, Usman Tariq4,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2363-2376, 2021, DOI:10.32604/cmc.2021.014550 - 13 April 2021

    Abstract The National Health Interview Survey (NHIS) shows that there are 13.2% of children at the age of 11 to 17 who are suffering from Attention Deficit Hyperactivity Disorder (ADHD), globally. The treatment methods for ADHD are either psycho-stimulant medications or cognitive therapy. These traditional methods, namely therapy, need a large number of visits to hospitals and include medication. Neurogames could be used for the effective treatment of ADHD. It could be a helpful tool in improving children and ADHD patients’ cognitive skills by using Brain–Computer Interfaces (BCI). BCI enables the user to interact with the… More >

Displaying 1-10 on page 1 of 12. Per Page