Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024

    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

  • Open Access

    ARTICLE

    Attention-Based Residual Dense Shrinkage Network for ECG Denoising

    Dengyong Zhang1,2, Minzhi Yuan1,2, Feng Li1,2, Lebing Zhang3,*, Yanqiang Sun4, Yiming Ling5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2809-2824, 2024, DOI:10.32604/cmes.2023.029181 - 15 December 2023

    Abstract Electrocardiogram (ECG) signal is one of the noninvasive physiological measurement techniques commonly used in cardiac diagnosis. However, in real scenarios, the ECG signal is susceptible to various noise erosion, which affects the subsequent pathological analysis. Therefore, the effective removal of the noise from ECG signals has become a top priority in cardiac diagnostic research. Aiming at the problem of incomplete signal shape retention and low signal-to-noise ratio (SNR) after denoising, a novel ECG denoising network, named attention-based residual dense shrinkage network (ARDSN), is proposed in this paper. Firstly, the shallow ECG characteristics are extracted by More >

  • Open Access

    ARTICLE

    Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

    Muhammad Aleem Raza1, Muhammad Anwar2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Usman Ahmed Raza1, Sadiq Ali Khan4, Fahad Ahmad5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3817-3834, 2023, DOI:10.32604/cmc.2023.032275 - 26 December 2023

    Abstract With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute More >

  • Open Access

    ARTICLE

    A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification

    S. Sathishkumar1,*, R. Devi Priya2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 129-148, 2023, DOI:10.32604/iasc.2023.023817 - 06 June 2022

    Abstract Electrocardiogram (ECG) is a diagnostic method that helps to assess and record the electrical impulses of heart. The traditional methods in the extraction of ECG features is inneffective for avoiding the computational abstractions in the ECG signal. The cardiologist and medical specialist find numerous difficulties in the process of traditional approaches. The specified restrictions are eliminated in the proposed classifier. The fundamental aim of this work is to find the R-R interval. To analyze the blockage, different approaches are implemented, which make the computation as facile with high accuracy. The information are recovered from the… More >

  • Open Access

    ARTICLE

    Intelligent Biomedical Electrocardiogram Signal Processing for Cardiovascular Disease Diagnosis

    R. Krishnaswamy1,*, B. Sivakumar2, B. Viswanathan3, Fahd N. Al-Wesabi4,5, Marwa Obayya6, Anwer Mustafa Hilal7

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 255-268, 2022, DOI:10.32604/cmc.2022.021995 - 03 November 2021

    Abstract Automatic biomedical signal recognition is an important process for several disease diagnoses. Particularly, Electrocardiogram (ECG) is commonly used to identify cardiovascular diseases. The professionals can determine the existence of cardiovascular diseases using the morphological patterns of the ECG signals. In order to raise the diagnostic accuracy and reduce the diagnostic time, automated computer aided diagnosis model is necessary. With the advancements of artificial intelligence (AI) techniques, large quantity of biomedical datasets can be easily examined for decision making. In this aspect, this paper presents an intelligent biomedical ECG signal processing (IBECG-SP) technique for CVD diagnosis.… More >

Displaying 1-10 on page 1 of 5. Per Page