Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024

    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

  • Open Access

    ARTICLE

    Heart-Net: A Multi-Modal Deep Learning Approach for Diagnosing Cardiovascular Diseases

    Deema Mohammed Alsekait1, Ahmed Younes Shdefat2, Ayman Nabil3, Asif Nawaz4,*, Muhammad Rizwan Rashid Rana4, Zohair Ahmed5, Hanaa Fathi6, Diaa Salama AbdElminaam6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3967-3990, 2024, DOI:10.32604/cmc.2024.054591 - 12 September 2024

    Abstract Heart disease remains a leading cause of morbidity and mortality worldwide, highlighting the need for improved diagnostic methods. Traditional diagnostics face limitations such as reliance on single-modality data and vulnerability to apparatus faults, which can reduce accuracy, especially with poor-quality images. Additionally, these methods often require significant time and expertise, making them less accessible in resource-limited settings. Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating multi-modality data and enhancing diagnostic precision, ultimately improving patient outcomes and reducing healthcare costs. This study introduces Heart-Net, a multi-modal deep learning framework designed to… More >

  • Open Access

    ARTICLE

    Comparison of QT Correction Methods in the Pediatric Population of a Community Hospital: A Retrospective Study

    Koren Hyogene Kwag1,*, Ibrahim Kak1, Ying Li2, Walid Khass1, Alec McKechnie1, Oksana Nulman1, Brande Brown1, Manoj Chhabra1

    Congenital Heart Disease, Vol.19, No.1, pp. 107-121, 2024, DOI:10.32604/chd.2024.045953 - 20 March 2024

    Abstract Objective: Accurate measurement of QT interval, the ventricular action potential from depolarization to repolarization, is important for the early detection of Long QT syndrome. The most effective QT correction (QTc) formula has yet to be determined in the pediatric population, although it has intrinsically greater extremes in heart rate (HR) and is more susceptible to errors in measurement. The authors of this study compare six different QTc methods (Bazett, Fridericia, Framingham, Hodges, Rautaharju, and a computer algorithm utilizing the Bazett formula) for consistency against variations in HR and RR interval. Methods: Descriptive Retrospective Study. We… More >

  • Open Access

    ARTICLE

    Attention-Based Residual Dense Shrinkage Network for ECG Denoising

    Dengyong Zhang1,2, Minzhi Yuan1,2, Feng Li1,2, Lebing Zhang3,*, Yanqiang Sun4, Yiming Ling5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2809-2824, 2024, DOI:10.32604/cmes.2023.029181 - 15 December 2023

    Abstract Electrocardiogram (ECG) signal is one of the noninvasive physiological measurement techniques commonly used in cardiac diagnosis. However, in real scenarios, the ECG signal is susceptible to various noise erosion, which affects the subsequent pathological analysis. Therefore, the effective removal of the noise from ECG signals has become a top priority in cardiac diagnostic research. Aiming at the problem of incomplete signal shape retention and low signal-to-noise ratio (SNR) after denoising, a novel ECG denoising network, named attention-based residual dense shrinkage network (ARDSN), is proposed in this paper. Firstly, the shallow ECG characteristics are extracted by More >

  • Open Access

    ARTICLE

    Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

    Muhammad Aleem Raza1, Muhammad Anwar2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Usman Ahmed Raza1, Sadiq Ali Khan4, Fahad Ahmad5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3817-3834, 2023, DOI:10.32604/cmc.2023.032275 - 26 December 2023

    Abstract With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute More >

  • Open Access

    ARTICLE

    Convolution-Based Heterogeneous Activation Facility for Effective Machine Learning of ECG Signals

    Premanand S., Sathiya Narayanan*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 25-45, 2023, DOI:10.32604/cmc.2023.042590 - 31 October 2023

    Abstract Machine Learning (ML) and Deep Learning (DL) technologies are revolutionizing the medical domain, especially with Electrocardiogram (ECG), by providing new tools and techniques for diagnosing, treating, and preventing diseases. However, DL architectures are computationally more demanding. In recent years, researchers have focused on combining the computationally less intensive portion of the DL architectures with ML approaches, say for example, combining the convolutional layer blocks of Convolution Neural Networks (CNNs) into ML algorithms such as Extreme Gradient Boosting (XGBoost) and K-Nearest Neighbor (KNN) resulting in CNN-XGBoost and CNN-KNN, respectively. However, these approaches are homogenous in the… More >

  • Open Access

    ARTICLE

    Convolutional LSTM Network for Heart Disease Diagnosis on Electrocardiograms

    Batyrkhan Omarov1,*, Meirzhan Baikuvekov1, Zeinel Momynkulov2, Aray Kassenkhan3, Saltanat Nuralykyzy3, Mereilim Iglikova3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3745-3761, 2023, DOI:10.32604/cmc.2023.042627 - 08 October 2023

    Abstract Heart disease is a leading cause of mortality worldwide. Electrocardiograms (ECG) play a crucial role in diagnosing heart disease. However, interpreting ECG signals necessitates specialized knowledge and training. The development of automated methods for ECG analysis has the potential to enhance the accuracy and efficiency of heart disease diagnosis. This research paper proposes a 3D Convolutional Long Short-Term Memory (Conv-LSTM) model for detecting heart disease using ECG signals. The proposed model combines the advantages of both convolutional neural networks (CNN) and long short-term memory (LSTM) networks. By considering both the spatial and temporal dependencies of… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Automatic Cardiovascular Disease Prediction Employing ECG Signals

    Muhammad Tayyeb1, Muhammad Umer1, Khaled Alnowaiser2, Saima Sadiq3, Ala’ Abdulmajid Eshmawi4, Rizwan Majeed5, Abdullah Mohamed6, Houbing Song7, Imran Ashraf8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1677-1694, 2023, DOI:10.32604/cmes.2023.026535 - 26 June 2023

    Abstract Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately. Currently, electrocardiogram (ECG) data is analyzed by medical experts to determine the cardiac abnormality, which is time-consuming. In addition, the diagnosis requires experienced medical experts and is error-prone. However, automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures. This study proposes a simple multilayer perceptron (MLP) model for heart disease prediction to reduce computational complexity. ECG dataset containing averaged signals More >

  • Open Access

    ARTICLE

    Dipper Throated Algorithm for Feature Selection and Classification in Electrocardiogram

    Doaa Sami Khafaga1, Amel Ali Alhussan1,*, Abdelaziz A. Abdelhamid2,3, Abdelhameed Ibrahim4, Mohamed Saber5, El-Sayed M. El-kenawy6,7

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1469-1482, 2023, DOI:10.32604/csse.2023.031943 - 03 November 2022

    Abstract Arrhythmia has been classified using a variety of methods. Because of the dynamic nature of electrocardiogram (ECG) data, traditional handcrafted approaches are difficult to execute, making the machine learning (ML) solutions more appealing. Patients with cardiac arrhythmias can benefit from competent monitoring to save their lives. Cardiac arrhythmia classification and prediction have greatly improved in recent years. Arrhythmias are a category of conditions in which the heart's electrical activity is abnormally rapid or sluggish. Every year, it is one of the main reasons of mortality for both men and women, worldwide. For the classification of… More >

  • Open Access

    ARTICLE

    Optimization of Electrocardiogram Classification Using Dipper Throated Algorithm and Differential Evolution

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,3, Faten Khalid Karim1,*, Sameer Alshetewi4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, D. L. Elsheweikh8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2379-2395, 2023, DOI:10.32604/cmc.2023.032886 - 31 October 2022

    Abstract Electrocardiogram (ECG) signal is a measure of the heart’s electrical activity. Recently, ECG detection and classification have benefited from the use of computer-aided systems by cardiologists. The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization (DTO) and Differential Evolution Algorithm (DEA) into a unified algorithm to optimize the hyperparameters of neural network (NN) for boosting the ECG classification accuracy. In addition, we proposed a new feature selection method for selecting the significant feature that can improve the overall performance. To prove the superiority of the More >

Displaying 1-10 on page 1 of 26. Per Page