Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

    Yanpu Chao1,*, Fulai Cao1, Hao Yi2,3,*, Shuai Lu1, Yaohui Li1, Hui Cen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2489-2508, 2024, DOI:10.32604/fdmp.2024.051962 - 28 October 2024

    Abstract The so-called fourth-generation biodegradable vascular stent has become a research hotspot in the field of bio-engineering because of its good degradation ability and drug-loading characteristics. However, the preparation of polymer-degraded vascular stents is affected by known problem such as poor process flexibility, low forming accuracy, large diameter wall thickness, limited complex pore structure, weak mechanical properties of radial support and high process cost. In this study, a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents. The experimental results show that, due to the rotation… More > Graphic Abstract

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

  • Open Access

    ARTICLE

    Stability of the Liquid-Vapor Interface under the Combined Influence of Normal Vibrations and an Electric Field

    Vladimir Konovalov*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2541-2563, 2024, DOI:10.32604/fdmp.2024.051219 - 28 October 2024

    Abstract The regime of horizontal subcooled film boiling is characterized by the formation of a thin layer of vapor covering the surface of a flat horizontal heater. Based on the equations of motion of a viscous incompressible fluid and the equation of heat transfer, the stability of such a vapor film is investigated. The influence of the modulation of the gravity field caused by vertical vibrations of the heater of finite frequency, as well as a constant electric field applied normal to the surface of the heater, is taken into account. It is shown that in… More >

  • Open Access

    ARTICLE

    Paraelectric Doping Simultaneously Improves the Field Frequency Adaptability and Dielectric Properties of Ferroelectric Materials: A Phase-Field Study

    Zhi Wang1, Jinming Cao1, Zhonglei Liu1, Yuhong Zhao1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 213-228, 2024, DOI:10.32604/cmc.2024.055169 - 15 October 2024

    Abstract Recent years, the polarization response of ferroelectrics has been entirely studied. However, it is found that the polarization may disappear gradually with the continually applied of electric field. In this paper, taking K0.48Na0.52NbO3(KNN) as an example, it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods. The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency, the maximum polarization disappeared at high frequencies, and the hysteresis loop became elliptical. In More >

  • Open Access

    ARTICLE

    Research on Total Electric Field Prediction Method of Ultra-High Voltage Direct Current Transmission Line Based on Stacking Algorithm

    Yinkong Wei1,2, Mucong Wu1,2,*, Wei Wei3, Paulo R. F. Rocha4, Ziyi Cheng1,2, Weifang Yao5

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 723-738, 2024, DOI:10.32604/csse.2023.036062 - 20 May 2024

    Abstract Ultra-high voltage (UHV) transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment. The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid. Yet, the accurate prediction of the ground total electric field remains a technical challenge. In this work, we collected the total electric field data from the Ningdong-Zhejiang ±800 kV UHVDC transmission project, as of the Ling Shao line, and perform an outlier analysis of the More >

  • Open Access

    ARTICLE

    Optimization of DC Resistance Divider Up to 1200 kV Using Thermal and Electric Field Analysis

    Dengyun Li, Baiwen Du, Kai Zhu, Jicheng Yu*, Siyuan Liang, Changxi Yue

    Energy Engineering, Vol.120, No.11, pp. 2611-2628, 2023, DOI:10.32604/ee.2023.028282 - 31 October 2023

    Abstract Self-heating and electric field distribution are the primary factors affecting the accuracy of the Ultra High Voltage Direct Current (UHVDC) resistive divider. Reducing the internal temperature rise of the voltage divider caused by self-heating, reducing the maximum electric field strength of the voltage divider, and uniform electric field distribution can effectively improve the UHVDC resistive divider’s accuracy. In this paper, thermal analysis and electric field distribution optimization design of 1200 kV UHVDC resistive divider are carried out: (1) Using the proposed iterative algorithm, the heat dissipation and temperature distribution of the high voltage DC resistive… More >

  • Open Access

    ARTICLE

    Design and Experimental Testing of an Electric Field-Driven Droplet Injection Device

    Fulai Cao1,*, Yanpu Chao1,*, Hao Yi2,3, Shuai Lu1, Chengshui Guo4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2891-2905, 2023, DOI:10.32604/fdmp.2023.029243 - 18 September 2023

    Abstract The properties of droplets produced by existing on-demand injection systems are typically determined by the nozzle diameter, i.e., only droplets with size larger than this diameter can be obtained. To solve this problem, a system for electric field-driven droplet injection and deposition was developed, and the related performances were compared with those of a standard pneumatic system. The results show that the diameter of droplets generated accordingly can be significantly smaller than the nozzle diameter. In particular, the effects of frequency and duty ratio on the number of droplets were studied by assuming microcrystalline wax More > Graphic Abstract

    Design and Experimental Testing of an Electric Field-Driven Droplet Injection Device

  • Open Access

    ARTICLE

    Prediction-Based Thunderstorm Path Recovery Method Using CNN-BiLSTM

    Xu Yang1,2, Ling Zhuang1, Yuqiang Sun3, Wenjie Zhang4,5,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1637-1654, 2023, DOI:10.32604/iasc.2023.039879 - 21 June 2023

    Abstract The loss of three-dimensional atmospheric electric field (3DAEF) data has a negative impact on thunderstorm detection. This paper proposes a method for thunderstorm point charge path recovery. Based on the relationship between a point charge and 3DAEF, we derive corresponding localization formulae by establishing a point charge localization model. Generally, point charge movement paths are obtained after fitting time series localization results. However, AEF data losses make it difficult to fit and visualize paths. Therefore, using available AEF data without loss as input, we design a hybrid model combining the convolutional neural network (CNN) and… More >

  • Open Access

    ARTICLE

    Improving Crude Oil Flow Using Graphene Flakes under an Applied Electric Field

    Thaer Al-Jadir1,*, Laith S. Sabri2, Wafaa A. Kadhim3, Saja Mohsen Alardhi3, Raheek I. Ibrahim4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2067-2081, 2023, DOI:10.32604/fdmp.2023.027156 - 04 April 2023

    Abstract Graphene flakes (GF) have been prepared and assessed as a material for improving flow in oil pipelines under the effect of an electric field. In particular, different amounts of GFs have been considered in order to determine the optimal flow conditions. The GFs were prepared from graphite foam, derived from the dehydration of sugar with a particle size of 500–600 μm, which was dispersed in ethanol and exfoliated in a ball mill under a shear force. After 15 h of exfoliation, sonication, and subsequent high-speed centrifugation at 3000 rpm, irregular-shaped GFs of 50–140 nm were produced and characterized… More > Graphic Abstract

    Improving Crude Oil Flow Using Graphene Flakes under an Applied Electric Field

  • Open Access

    ARTICLE

    Hydrophobic Poplar Prepared via High Voltage Electric Field (HVEF) with Copper as Electrode Plate

    Jianxin Cui1,#, Zehui Ju1,#, Lu Hong2, Biqing Shu1,3, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2907-2919, 2022, DOI:10.32604/jrm.2022.019270 - 29 June 2022

    Abstract In order to improve hydrophobic characteristics which will affect the service performance of fast-growing poplar due to growing bacteria in the humid environment. In this study, a simple method was proposed to treat poplar via the high voltage electric field (HVEF) with copper as the electrode plate. Scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD) and contact angle tester were adopted to evaluate the surface morphology, surface group of poplar, crystallinity and wettability under HVEF. It was found by SEM that a large number of copper particles were uniformly attached to More >

  • Open Access

    ARTICLE

    Numerical Study of Temperature and Electric Field Effects on the Total Optical Absorption Coefficient in the Presence of Optical Inter-Conduction-Subband Transitions in InGaN/GaN Single Parabolic Quantum Wells

    Redouane En-nadir1,*, Haddou El-ghazi2, Anouar Jorio1, Izeddine Zorkani1, Hassan Abboudi1, Fath Allah Jabouti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1253-1261, 2022, DOI:10.32604/fdmp.2022.021759 - 27 May 2022

    Abstract In this paper, we theoretically investigate the total optical coefficient (TOAC) considering 1S-2P and 2S-2P conduction subband transitions in a single parabolic quantum well (SPQW) with an on-center hydrogen-like impurity. Within the framework of the effective-mass approximation, the Schrödinger equation is solved numerically to obtain the eigenvalues and their corresponding eigenvectors using the finite difference method. The calculations are performed for finite confinement potential height, taking into account the dielectric and effective mass mismatches between GaN and InGaN materials under the considered electric field and temperature effects. The temperature dependence of the effective mass, dielectric… More > Graphic Abstract

    Numerical Study of Temperature and Electric Field Effects on the Total Optical Absorption Coefficient in the Presence of Optical Inter-Conduction-Subband Transitions in InGaN/GaN Single Parabolic Quantum Wells

Displaying 1-10 on page 1 of 30. Per Page