Pouyan Razmjouei1, Elaheh Moharamkhani2, Mohamad Hasanvand3, Maryam Daneshfar4, Mohammad Shokouhifar5,*
CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3855-3880, 2024, DOI:10.32604/cmc.2024.054460
- 12 September 2024
Abstract This study investigates the application of deep learning, ensemble learning, metaheuristic optimization, and image processing techniques for detecting lung and colon cancers, aiming to enhance treatment efficacy and improve survival rates. We introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer classification. The diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks (CNNs) in feature extraction and model constructions, and utilizing the power of various Machine Learning (ML) algorithms for final classification. Specifically, we consider different scenarios consisting of two-class colon… More >