Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    EDU-GAN: Edge Enhancement Generative Adversarial Networks with Dual-Domain Discriminators for Inscription Images Denoising

    Yunjing Liu1,, Erhu Zhang1,2,,*, Jingjing Wang3, Guangfeng Lin2, Jinghong Duan4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1633-1653, 2024, DOI:10.32604/cmc.2024.052611 - 18 July 2024

    Abstract Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue. Different from natural images, character images pay more attention to stroke information. However, existing models mainly consider pixel-level information while ignoring structural information of the character, such as its edge and glyph, resulting in reconstructed images with mottled local structure and character damage. To solve these problems, we propose a novel generative adversarial network (GAN) framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework, i.e., EDU-GAN. Unlike existing frameworks, the generator introduces the… More >

Displaying 1-10 on page 1 of 1. Per Page