Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Quantum-Enhanced Edge Offloading and Resource Scheduling with Privacy-Preserving Machine Learning

    Junjie Cao1,2, Zhiyong Yu2,*, Xiaotao Xu1, Baohong Zhu3, Jian Yang2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5235-5257, 2025, DOI:10.32604/cmc.2025.062371 - 19 May 2025

    Abstract This paper introduces a quantum-enhanced edge computing framework that synergizes quantum-inspired algorithms with advanced machine learning techniques to optimize real-time task offloading in edge computing environments. This innovative approach not only significantly improves the system’s real-time responsiveness and resource utilization efficiency but also addresses critical challenges in Internet of Things (IoT) ecosystems—such as high demand variability, resource allocation uncertainties, and data privacy concerns—through practical solutions. Initially, the framework employs an adaptive adjustment mechanism to dynamically manage task and resource states, complemented by online learning models for precise predictive analytics. Secondly, it accelerates the search for… More >

  • Open Access

    ARTICLE

    Task Offloading in Edge Computing Using GNNs and DQN

    Asier Garmendia-Orbegozo1, Jose David Nunez-Gonzalez1,*, Miguel Angel Anton2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2649-2671, 2024, DOI:10.32604/cmes.2024.045912 - 11 March 2024

    Abstract In a network environment composed of different types of computing centers that can be divided into different layers (clod, edge layer, and others), the interconnection between them offers the possibility of peer-to-peer task offloading. For many resource-constrained devices, the computation of many types of tasks is not feasible because they cannot support such computations as they do not have enough available memory and processing capacity. In this scenario, it is worth considering transferring these tasks to resource-rich platforms, such as Edge Data Centers or remote cloud servers. For different reasons, it is more exciting and… More > Graphic Abstract

    Task Offloading in Edge Computing Using GNNs and DQN

Displaying 1-10 on page 1 of 2. Per Page