Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147 - 18 July 2024

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

  • Open Access

    ARTICLE

    Optimized Energy Efficient Strategy for Data Reduction Between Edge Devices in Cloud-IoT

    Dibyendu Mukherjee1, Shivnath Ghosh1, Souvik Pal2,*, D. Akila3, N. Z. Jhanjhi4, Mehedi Masud5, Mohammed A. AlZain6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 125-140, 2022, DOI:10.32604/cmc.2022.023611 - 24 February 2022

    Abstract Numerous Internet of Things (IoT) systems produce massive volumes of information that must be handled and answered in a quite short period. The growing energy usage related to the migration of data into the cloud is one of the biggest problems. Edge computation helps users unload the workload again from cloud near the source of the information that must be handled to save time, increase security, and reduce the congestion of networks. Therefore, in this paper, Optimized Energy Efficient Strategy (OEES) has been proposed for extracting, distributing, evaluating the data on the edge devices. In… More >

  • Open Access

    ARTICLE

    A Neural Network-Based Trust Management System for Edge Devices in Peer-to-Peer Networks

    Alanoud Alhussain1, Heba Kurdi1,*, Lina Altoaimy2

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 805-815, 2019, DOI:10.32604/cmc.2019.05848

    Abstract Edge devices in Internet of Things (IoT) applications can form peers to communicate in peer-to-peer (P2P) networks over P2P protocols. Using P2P networks ensures scalability and removes the need for centralized management. However, due to the open nature of P2P networks, they often suffer from the existence of malicious peers, especially malicious peers that unite in groups to raise each other's ratings. This compromises users' safety and makes them lose their confidence about the files or services they are receiving. To address these challenges, we propose a neural network-based algorithm, which uses the advantages of More >

Displaying 1-10 on page 1 of 3. Per Page