Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Real-Time Cheating Behaviour Detection in Online Exams Using Video Captured Analysis

    Dao Phuc Minh Huy1, Gia Nhu Nguyen1, Dac-Nhuong Le2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070948 - 12 January 2026

    Abstract Online examinations have become a dominant assessment mode, increasing concerns over academic integrity. To address the critical challenge of detecting cheating behaviours, this study proposes a hybrid deep learning approach that combines visual detection and temporal behaviour classification. The methodology utilises object detection models—You Only Look Once (YOLOv12), Faster Region-based Convolutional Neural Network (RCNN), and Single Shot Detector (SSD) MobileNet—integrated with classification models such as Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Unit (Bi-GRU), and CNN-LSTM (Long Short-Term Memory). Two distinct datasets were used: the Online Exam Proctoring (EOP) dataset from Michigan State University and… More >

  • Open Access

    ARTICLE

    Cross-Sectional Associations of Lifestyle Behaviors with Depressive Symptoms in Adolescents

    Weiman Kong1, Jiayi Gu2,*

    International Journal of Mental Health Promotion, Vol.25, No.1, pp. 139-152, 2023, DOI:10.32604/ijmhp.2022.022123 - 29 November 2022

    Abstract This study aimed to examine the associations between lifestyle behaviors and depressive symptoms in adolescents. Self-reported data from the 2019 Youth Risk Behavior Survey (YRBS) was analyzed. Depressive symptoms were set as the outcome variable. Movement variables (physical activity, muscle-strengthening exercise, physical education attendance, sports team participation, television watching, video or computer games, and sleep), eating behaviors (fruit intake, vegetable intake, milk intake, and eating breakfast or not), and substance use (alcohol use and cigarette use) were included as explanatory variables. Binary logistic regression was used to explore the associations between lifestyle behaviors and depressive… More >

Displaying 1-10 on page 1 of 2. Per Page