CMES: The Application Channel for the 2022 Young Researcher Award is now Open
Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
Structural Durability & Health Monitoring, Vol.16, No.3, pp. 213-233, 2022, DOI:10.32604/sdhm.2022.018293
Abstract Silos are strategical structures used to stockpile various types of granular materials. They are highly vulnerable to earthquake excitation and have been frequently reported to fail at a higher rate than any other industrial structure. The seismic response of silos within the near-fault region will suffer a complex combination of loadings due to the unique characteristics of the near-fault ground motions; which are usually associated with a large amplitude pulse at the beginning of either the velocity or the displacement time histories. This study aims to numerically evaluate the seismic response of reinforced concrete cylindrical silos under near-fault ground motions… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1289-1314, 2022, DOI:10.32604/cmes.2022.018540
Abstract Tunnel portal sections often suffer serious damage in strong earthquake events. Earthquake waves may propagate in different directions, producing various dynamic responses in the tunnel portal. Based on the Galongla tunnel, which is located in a seismic region of China, three-dimensional seismic analysis is conducted to investigate the dynamic response of a tunnel portal subjected to earthquake waves with different vibration directions. In order to simulate the mechanic behavior of slope rock effectively, an elastoplastic damage model is adopted and applied to ABAQUS software by a self-compiled user material (UMAT) subroutine. Moreover, the seismic wave input method for tunnel portal… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 167-186, 2022, DOI:10.32604/cmes.2022.018113
Abstract There are few studies on the dynamic-response mechanism of near-fault and far-field ground motions for large underground structures, especially for the branch joint of a utility tunnel (UT) and its internal pipeline. Based on the theory of a 3D viscous-spring artificial boundary, this paper deduced the equivalent nodal force when a P wave and an SV wave were vertically incident at the same time and transformed the ground motion into an equivalent nodal force using a self-developed MATLAB program, which was applied to an ABAQUS finite element model. Based on near-fault and far-field ground motions obtained from the NGA-WEST2 database,… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1181-1207, 2021, DOI:10.32604/cmes.2021.017204
Abstract A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom (MDOF) building structures under multi-level ground motions (GMs). This method realizes a design that is effective for various levels of GMs. The robustness of a design is measured by an incremental dynamic analysis (IDA) curve and an ideal drift response curve (IDRC). The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs. the design level of the GMs. The total damper quantity corresponds to the total cost of the added dampers. First, a problem of generation of IDRCs is… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3763-3780, 2022, DOI:10.32604/cmc.2022.020336
Abstract The earthquake is considered one of the most devastating disasters in any area of the world due to its potentially destructive force. Based on the various earthquake-related parameters, the risk assessment is enabled in advance to prevent future earthquake disasters. In this paper, for providing the shelter space demands to reduce the damage level and prevention costs, an earthquake risk assessment approach is proposed for deriving the risk index based on multiple spatial parameters in the gridded map. The proposed assessment approach is comprised of pre-processing, methodology model, and data visualization. The risk index model derives the earthquake risk index… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 315-337, 2021, DOI:10.32604/cmes.2021.016494
Abstract This study presents a practical design strategy for a large-size Submerged Floating Tunnel (SFT) under different target environments through global-performance simulations. A coupled time-domain simulation model for SFT is established to check hydro-elastic behaviors under the design random wave and earthquake excitations. The tunnel and mooring lines are modeled with a finite-element line model based on a series of lumped masses connected by axial, bending, and torsional springs, and thus the dynamic/structural deformability of the entire SFT is fully considered. The dummy-connection-mass method and constraint boundary conditions are employed to connect the tunnel and mooring lines in a convenient manner.… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.35, No.3, pp. 191-199, 2020, DOI:10.32604/csse.2020.35.191
Abstract In this paper, the rapid assessment method of casualties in earthquake disasters is studied and a casualty assessment model based on coupling factors is established from the perspective of factors affecting casualties in earthquake disasters. Taking Guangdong area as an example, the spatialization and quantification of casualty coupling factors in earthquake disasters are analyzed in detail. A software system is developed based on ARC Engine 10.1 platform. For the same earthquake case, different algorithms (algorithm model based on coupling factor and algorithm model based on building seismic vulnerability) are used to calculate the number of casualties in order to compare… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 691-715, 2020, DOI:10.32604/cmes.2020.09046
Abstract Large cooling towers in thermal power plants and nuclear power plants are likely to suffer from strong earthquakes during service periods. The resulting destructions of the cooling towers would endanger the power plants and threaten the security of the related areas. It is important to use effective means to evaluate the safety status of the cooling towers and guide further precautions as well as retrofitting efforts. This paper is therefore focused on an elaborate numerical investigation to the earthquake-induced collapses of a large cooling tower structure. A complete numerical work for simulation of material failure, component fracture, structural buckling and… More >
Open Access
ABSTRACT
The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.1, pp. 7-8, 2011, DOI:10.3970/icces.2011.019.007
Abstract The traditional Discontinuous Deformation Analysis (DDA) method, like other Discrete Element Methods, is created to model the discrete block system. The extended DDA method based on meshless interpolations means utilizing meshless interpolations, usually the Moving Least-Squares interpolations, to present block displacement field. In the new extensions here, the effects of earthquake, excavation and bolt reinforcement on the assemblages of large blocks are modeled: for modeling earthquake, the initial acceleration value from earthquake at certain DDA time step can be interpolated from the earthquake acceleration vs. time curve; the modeling of excavation is by reversing in-situ stresses at excavation internal boundaries… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.2, pp. 153-168, 2004, DOI:10.3970/cmes.2004.006.153
Abstract Recent developments of the Earth Simulator, a high-performance parallel computer, has made it possible to realize realistic 3D simulations of seismic wave propagations on a regional scale including higher frequencies. Paralleling this development, the deployment of dense networks of strong ground motion instruments in Japan (K-NET and KiK-net) has now made it possible to directly visualize regional seismic wave propagation during large earthquakes. Our group has developed an efficient parallel finite difference method (FDM) code for modeling the seismic wavefield and a 3D visualization technique, both suitable for implementation on the Earth Simulator. Large-scale 3D simulations of seismic wave propagation… More >