Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (637)
  • Open Access

    PROCEEDINGS

    Integrated Multiscale Unified Phase-Field Modellings (UPFM)

    Yuhong Zhao1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012951

    Abstract For a long time, the phase-field method has been considered as a mesoscale phenomenological method lacking physical accuracy and unable to be associated with the mechanical/functional properties of materials, etc. Some misunderstandings existing in these viewpoints need to be clarified. Therefore, it is necessary to propose or adopt the perspective of “unified or unifying phase-field modeling (UPFM)” to address these issues, which means that phase-field modeling has multiple unifications. Specifically, the phase-field method is the perfect unity of thermodynamics and kinetics, the unity of multi-scale models from micro- to meso- and then to macroscopic scale, More >

  • Open Access

    PROCEEDINGS

    Effect of Slender Bar Structures on the Boundary on Cavitation Bubble Dynamics Due to Self-Focusing Shockwaves

    Jiajun Cui1, Fabian Reuter2, Zhigang Zuo1,*, Shuhong Liu1,*, Claus-Dieter Ohl2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012155

    Abstract When cavitation bubbles collapse near a boundary, they can cause severe cavitation erosion to the boundary, which is a dangerous threat to the rapidly rotating turbines. Prior research has established that for single bubbles a possible mechanism is energy focusing of shockwaves during the non-spherical collapse of cavitation bubbles [1]. This however needs a particularly symmetric environment. A possible approach to reduce the shockwave focusing and thus the erosion would be through suitable modification of the boundary. In a first approach to modify this phenomenon, we introduce the symmetry breaking structure on the boundary in the shape of a slender bar to explore the effect More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation of Fluid Flow Evolution in Porous Sea Ice Based on TMPD

    Ying Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011329

    Abstract Granular and columnar sea ice formed random pores containing gas and brine while growing in a polar environment. Building an appropriate microstructure of sea ice model to reveal its material singularities using standard methods is difficult. In this study, we develop a porous sea ice model based on coupled thermos-mechanical peridynamics [1-3] by considering the fluid flow and material transport in pores. The novel features of using the porous sea ice peridynamic model are as follows: (1) To establish the porous sea ice model, the sea ice pore equation is combined with the peridynamic equations. More >

  • Open Access

    PROCEEDINGS

    Dynamics of Bubble-Particle Interaction at Different Distances Under Ultrasonic Excitation

    Jie Wang1,*, Jingyu Gu1, Shuai Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012184

    Abstract The interaction between the particle and the bubble under the ultrasonic wave excitation plays a pivotal role in various applications such as targeted therapy, ultrasonic cleaning, ultrasonography, and microbubble motors. When the particle is in close proximity or even attached to the bubble, a strong fluid-structure interaction occurs, significantly influencing the particle propulsion. The attachment of the bubble to the particle results in distinct bubble pulsation patterns and particle acceleration mechanisms from the non-contact state. Thus, we propose a fluid-structure interaction model based on the boundary integral method (BIM) to comprehensively consider the distance between More >

  • Open Access

    PROCEEDINGS

    On the Shock-Wave Self-Focusing Dynamics of a Single Collapsing Bubble: A Numerical Study

    Wentao Wu1, Qingyun Zeng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.012089

    Abstract The collapses of bubbles near rigid walls are seen widely in engineering and medical applications, examples are surface cleaning, sonoporation, under water explosion, and cavitation erosions, to name a few. Recent experimental studies demonstrated that only bubbles with extremely small stand-off distance γ (γ = d/Rmax, γ is stand-off distance, d is the initial distance of the bubble center to the boundary, and Rmax is the maximum radius the bubble would attain) generate severe erosions during the first oscillating circle. This erosion phenomenon, attributed to a self-focusing mechanism, lacks a comprehensive explanation. Here we provided… More >

  • Open Access

    PROCEEDINGS

    Bubble Dynamics Within a Droplet: A New Mechanism for Mixing in Binary Immiscible Fluid Systems

    Zhesheng Zhao1, Shuai Li1, Rui Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012080

    Abstract This study investigates the interactions between droplets and bubbles within water-in-oil (O/W) and oil-in-water (W/O) systems, a fundamental problem of bubble dynamics in binary immiscible fluid systems. Considering the density ratio between the two fluids and the bubble-to-droplet size ratio, we have refined the classical spherical bubble pulsation equation, Rayleigh collapse time, and the natural frequency. In our experimental study, we found that the Rayleigh-Taylor (RT) instability hardly develops on the surface of the droplet when the densities of the two liquids are comparable. This phenomenon is explained using the classic theory of spherical RT More >

  • Open Access

    PROCEEDINGS

    Mechanism, Manipulation and Application of the Bubble Micromotor

    Leilei Wang1, Li Chen2, Haihang Cui2, Xu Zheng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011434

    Abstract The emerging technique of artificial micro/nano-motors [1] provides a vivid example of the idea using tiny machines to finish jobs in microscopic world. Among many micro/nano-motors, microbubble driven micromotor is a unique type that can reach the highest propulsion speed [2, 3], owing to the high surface energy of the bubble and the focused hydrodynamic jet during bubble collapse that can significantly enhance micromotor’s propulsion. Recent progress has demonstrated that the microbubble itself can implement new functions for the micromotor based on bubble dynamics and induced hydrodynamic flow, rather than merely providing energy. For instance,… More >

  • Open Access

    PROCEEDINGS

    Fast and Accurate Calculation on Competitive Adsorption Behavior in Shale Nanopores by Machine Learning Model

    Hao Yu1,*, Mengcheng Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011120

    Abstract Understanding the competitive adsorption behavior of CO2 and CH4 in shale nanopores is crucial for enhancing the recovery of shale gas and sequestration of CO2, which is determined by both the inherent characteristics of the molecules and external environmental factors such as pore size, temperature, and partial pressures of CO2 and CH4. While the competitive adsorption behavior of CO2/CH4 has been analyzed by previous studies, a comprehensive understanding from the perspective of molecular kinetic theory and the efficient calculation for competitive adsorption behavior considering various geological situations is still challenging, limited by the huge computation cost of classical… More >

  • Open Access

    PROCEEDINGS

    Crack Dynamics Propagation in the Fractured Geothermal Reservoir Under Thermo-Hydro-Mechanical-Chemical Coupling

    Weitao Zhang1, Dongxu Han2,*, Yujie Chen2, Tingyu Li3, Liang Gong1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011484

    Abstract As climate change accelerates due to fossil fuel use, geothermal energy emerges as an indispensable renewable solution 1. Hot dry rock (HDR) reservoirs, accounting for more than 90% of total geothermal resources 2, have gained wide attention worldwide for their abundant reserves, wide distribution, and carbon-free, stable, and efficient supply characteristics 3. While HDR geothermal energy offers significant potential, its development faces challenges, including the complex interaction between fluid flow, heat transfer, reactive solute transport, and the rock’s mechanical processes, referred to as the THMC coupling process 4. Cracks, ubiquitous in HDR geothermal reservoirs, exhibit… More >

  • Open Access

    PROCEEDINGS

    Collision-Induced Adhesion Behavior and Mechanism for Metal Particle and Graphene

    Haitao Hei1, Jian Wang1, Yonggang Zheng1, Hongfei Ye1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011298

    Abstract Micro- and nano-scale collisions are widely involved in molecular movement, drug delivery, the actuation of micro-nano devices, etc. They often exhibit extraordinary behaviour relative to the common macroscopic collisions. A deep understanding on the scale reduction-induced novel collision phenomenon and the related mechanism is rather crucial. In this work, the comprehensive impact behaviour of metal projectiles on graphene is investigated on the basis of molecular dynamics simulations. It is found that besides the common penetration and rebound behaviours, the impacting metal projectile can also be captured by the ultrasoft two-dimensional materials, i.e., the adhesion behaviour.… More >

Displaying 1-10 on page 1 of 637. Per Page