Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Effect of Blasting Stress Wave on Dynamic Crack Propagation

    Huizhen Liu1,2, Duanying Wan3, Meng Wang3, Zheming Zhu3, Liyun Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 349-368, 2024, DOI:10.32604/cmes.2023.028197

    Abstract Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation. Therefore, evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting. In this study, ANSYS/LS-DYNA was used for blasting numerical simulation, in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed. Moreover, ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors (DSIFs). The universal function was calculated… More >

  • Open Access

    ARTICLE

    Transient coupled thermoelastic crack analysis in functionally graded materials1

    A.V. Ekhlakov2, O.M. Khay2, Ch. Zhang2, J. Sladek3, V. Sladek3

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 329-350, 2010, DOI:10.3970/sdhm.2010.006.329

    Abstract In this paper, transient crack analysis in two-dimensional, isotropic, continuously non-homo -ge -neous and linear elastic functionally graded materials is presented. A boundary-domain element method based on boundary-domain integral representations is developed. The Laplace-transform technique is utilized to eliminate the dependence on time. Laplace-transformed fundamental solutions of linear coupled thermoelasticity for isotropic, homogeneous and linear elastic solids are applied to derive boundary-domain integral equations. The numerical implementation is performed by using a collocation method for the spatial discretization. The time-dependent numerical solutions are obtained by the Stehfest's inversion algorithm. For an edge crack in a More >

  • Open Access

    ABSTRACT

    Evaluation of Dynamic Stress Intensity Factors Using Varying Horizon Size in Ordinary State-Based Peridynamics

    M. Imachi, S. Tanaka*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 17-17, 2019, DOI:10.32604/icces.2019.05896

    Abstract The J-integral and the interaction integral method are employing for evaluating dynamics stress intensity factor, in ordinary state-based peridynamics. The governing equation of peridynamics is based on internal force that defined by particles interact each other over finite distances. The interaction each particle needs to be satisfied the newton third law. A lot of particles are required for getting high accuracy in peridynamic modeling. Therefore, it is required the efficient modeling such as local meshing in finite element modeling. However, when arrangement of particle with varying particle size and horizon sizes are locally used, the… More >

  • Open Access

    ARTICLE

    Dynamic Stress Intensity Factors of Collinear Cracks under a Uniform Tensile Stress Wave

    K.-C. Wu2, S.-M. Huang2, S.-H. Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.2, pp. 133-148, 2013, DOI:10.3970/cmes.2013.093.133

    Abstract An analysis is presented for an array of collinear cracks subject to a uniform tensile stress wave in an isotropic material. An integral equation for the problem is established by modeling the cracks as distributions of dislocations. The integral equation is solved numerically in the Laplace transform domain first and the solution is then inverted to the time domain to calculate the dynamic stress intensity factors. Numerical examples of one, two, or three collinear cracks are given. The results of one or two cracks are checked to agree closely with the existing results. More >

  • Open Access

    ARTICLE

    A comparative study of three domain-integral evaluation techniques in the boundary-domain integral equation method for transient thermoelastic crack analysis in FGMs

    A.V. Ekhlakov1,2, O.M. Khay1,3, Ch. Zhang1, X.W. Gao4, J. Sladek5, V. Sladek5

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.6, pp. 595-614, 2013, DOI:10.3970/cmes.2013.092.595

    Abstract A boundary-domain integral equation method is applied to the transient thermoelastic crack analysis in functionally graded materials. Fundamental solutions for homogeneous, isotropic and linear elastic materials are used to derive the boundary-domain integral equations. The radial integration method, the Cartesian transformation method and the cell-integration method are applied for the evaluation of the arising domain-integrals. Numerical results for dynamic stress intensity factors obtained by the three approaches are presented, compared and discussed to show the accuracy and the efficiency of the domain-integral evaluation techniques. More >

  • Open Access

    ARTICLE

    Applications of MLPG Method in Dynamic Fracture Problems

    L. Gao1, K. Liu1,2, Y. Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 181-196, 2006, DOI:10.3970/cmes.2006.012.181

    Abstract A new numerical algorithm based on the Meshless Local Petrov-Galerkin approach is presented for analyzing the dynamic fracture problems in elastic media. To simplify the treatment of essential boundary condition, a novel modified Moving Least Square (MLS) procedure is proposed by introducing Lagrange multiplier into MLS procedure, which can perform both MLS approximation and interpolation in one approximation domain. The compact spline function is used as the test function in the local form of elasto-dynamic equations. For the feature of stress wave propagation, the coupled second-order ODEs respect to the time are solved by the… More >

  • Open Access

    ARTICLE

    A 2-D Time-Domain BIEM for Dynamic Analysis of Cracked Orthotropic Solids1

    Ch. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 381-398, 2002, DOI:10.3970/cmes.2002.003.381

    Abstract A 2-D time-domain boundary integral equation method (BIEM) for transient dynamic analysis of cracked orthotropic solids is presented in this paper. A finite crack in an unbounded orthotropic solid subjected to an impact loading is considered. Hypersingular time-domain traction boundary integral equations (BIEs) are applied in the analysis. A time-stepping scheme is developed for solving the hypersingular time-domain traction BIEs. The scheme uses a convolution quadrature formula for temporal and a Galerkin method for spatial discretizations. Numerical examples are given to show that the presented time-domain BIEM is highly efficient and accurate. More >

  • Open Access

    ARTICLE

    Dynamic Stress Intensity Factors of Mode I Crack Problem for Functionally Graded Layered Structures

    Sheng-Hu Ding1,2, Xing Li2, Yue-Ting Zhou2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 43-84, 2010, DOI:10.3970/cmes.2010.056.043

    Abstract In this paper, the crack-tip fields in bonded functionally graded finite strips are studied. Different layers may have different nonhomogeneity properties in the structure. A bi-parameter exponential function was introduced to simulate the continuous variation of material properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. Various internal cracks and edge crack and crack crossing the interface configurations are investigated, respectively. The asymptotic stress field near the tip of a crack crossing the interface is examined and it is shown that, More >

  • Open Access

    ARTICLE

    3-D Transient Dynamic Crack Analysis by a Novel Time-Domain BEM

    Ch. Zhang2, A. Savaidis3

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 603-618, 2003, DOI:10.3970/cmes.2003.004.603

    Abstract A novel non-hypersingular time-domain traction BEM is presented for three-dimensional (3-D) transient elastodynamic crack analysis. The initial-boundary value problem is formulated as a set of non-hypersingular time-domain traction boundary integral equations (BIEs). To solve the time-domain traction BIEs, a time-stepping scheme based on the convolution quadrature formula of Lubich (1988a,b; 1994) for temporal discretization and a collocation method for spatial discretization is adopted. Numerical examples are given for an unbounded solid with a penny-shaped crack under a tensile and shear impact loading. A comparison of the present time-domain BEM with the conventional one shows that More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Study on the Mechanism of Three-Dimensional Dynamic Fracture

    T. Nishioka1, F. Stan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 119-140, 2003, DOI:10.3970/cmes.2003.004.119

    Abstract In this paper we investigate the essentially unexplored area of three-dimensional dynamic fracture mechanics. The general objective sought by this investigation is the understanding of three-dimensional dynamic crack propagation and arrest, and, specifically, the effect that the specimen thickness has on the dynamic fracture mechanism. In particular, in the context of the present paper, it is intended to provide a summary of the achievements on the issue of three-dimensional dynamic fracture parameters. Furthermore, the behavior of the three-dimensional field near the crack front is investigated. The issue that will be addressed is the extent of More >

Displaying 1-10 on page 1 of 10. Per Page