Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    REVIEW

    First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review

    Muhammad Abdullah Khan1, Muhammad Usman2, Yuhong Zhao1,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1905-1952, 2024, DOI:10.32604/cmc.2024.054691 - 18 November 2024

    Abstract This comprehensive review examines the structural, mechanical, electronic, and thermodynamic properties of Mg-Li-Al alloys, focusing on their corrosion resistance and mechanical performance enhancement. Utilizing first-principles calculations based on Density Functional Theory (DFT) and the quasi-harmonic approximation (QHA), the combined properties of the Mg-Li-Al phase are explored, revealing superior incompressibility, shear resistance, and stiffness compared to individual elements. The review highlights the brittleness of the alloy, supported by B/G ratios, Cauchy pressures, and Poisson’s ratios. Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics, while Mulliken population analysis emphasizes significant electron transfer within the… More >

  • Open Access

    PROCEEDINGS

    Dynamic Crack Propagation of Ceramic Materials under High Temperature Thermal Shock

    Biao Xia1,2, Changxing Zhang2,3,*, Zhanli Liu2, Xue Feng2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012764

    Abstract Ceramics has become one of the most promising candidate materials in the aerospace field due to its advantages of high melting point, corrosion resistance, wear resistance, and high-temperature stability [1,2]. However, the inherent brittleness of ceramics makes it prone to thermal shock failure under high-temperature extreme environments, which can lead to sudden catastrophic accidents in the structure [3-6]. This paper takes the high-temperature resistant ceramic materials in the aerospace industry as the research object. And the dynamic crack propagation mechanism is analyzed. Through the computational method based on the extended finite element method (XFEM), the… More >

  • Open Access

    ARTICLE

    Numerical Approach to Simulate the Effect of Corrosion Damage on the Natural Frequency of Reinforced Concrete Structures

    Amthal Hakim1, Wael Slika1,*, Rawan Machmouchi1, Adel Elkordi2

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 175-194, 2023, DOI:10.32604/sdhm.2022.023027 - 25 June 2023

    Abstract Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects. It may lead to spalling of concrete cover, reduction of section’s capacity and can alter the dynamic properties. For the dynamic properties, natural frequency is to be a reliable indicator of structural integrity that can be utilized in non-destructive corrosion assessment. Although the correlation between natural frequency and corrosion damage has been reflected in different experimental programs, few attempts have been made to investigate this relationship in forward modeling and/or structural health monitoring techniques. This can be attributed to the… More >

  • Open Access

    REVIEW

    Damage Assessment of Reinforced Concrete Structures through Damage Indices: A State-of-the-Art Review

    D. A. Makhloof, A. R. Ibrahim, Xiaodan Ren*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 849-874, 2021, DOI:10.32604/cmes.2021.016882 - 11 August 2021

    Abstract Due to the developments of computer science and technology in recent years, computer models and numerical simulations for large and complicated structures can be done. Among the vast information and results obtained from the analysis and simulations, the damage performance is of great importance since this damage might cause enormous losses for society and humanity, notably in cases of severe damage occurring. One of the most effective tools to handle the results about the damage performance of the structure is the damage index (DI) together with the damage states, which are used to correlate the… More >

  • Open Access

    ARTICLE

    Determination of the Thermodynamic Properties of Water and Steam in the p-T and p-S Planes via Different Grid Search Computer Algorithms

    Dugang Guo1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 419-430, 2019, DOI:10.32604/fdmp.2019.07831

    Abstract The role of different grid search computer algorithms for the determination of the thermodynamic properties of water and steam in the p-T and P-S planes has been investigated via experimental and analytical methods. The results show that the spline interpolation grid search algorithm and the power grid search algorithm are more efficient, stable and clear than other algorithms. More >

  • Open Access

    ARTICLE

    Effect of Recycling Cycles on the Mechanical and Damping Properties of Short Alfa Fibre Reinforced Polypropylene Composite

    Fatima Ezzahra El Abbassi1,*, Mustapha Assarar2, Rezak Ayad2, Hamid Sabhi2, Stephane Buet2, Nouzha Lamdouar3

    Journal of Renewable Materials, Vol.7, No.3, pp. 253-267, 2019, DOI:10.32604/jrm.2019.01759 - 14 July 2021

    Abstract This paper aims at studying the effect of recycling on the static and dynamic properties of short alfa fibre reinforced polypropylene. For this purpose, alfa fibres reinforced composites were elaborated by an injection moulding process and were subjected to different mechanical recycling cycles. Then, non-recycled and recycled materials were subjected to static tests and Dynamic Mechanical Analysis (DMA) to evaluate the effect of recycling on their behaviour. Besides, the effects of alkali and salt water treatments on the static and dynamic properties of the alfa composite were also investigated. The obtained results show that tensile More >

  • Open Access

    ARTICLE

    Biogenic Amorphous Silica as Filler for Elastomers

    Nikolay Dishovsky1*, Petrunka Malinova1, Ivan Uzunov2

    Journal of Renewable Materials, Vol.6, No.4, pp. 402-412, 2018, DOI:10.7569/JRM.2017.634171

    Abstract Natural products from agricultural wastes are finding importance in the polymer industry due to their many advantages such as being lightweight, low cost and environmentally friendly. In the present study the potential of the two types of rice husk ash (RHA) prepared under different conditions as fillers in natural rubber-based elastomer composites was investigated. The fillers were prepared by rice husks incineration and characterized by means of X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) specific surface area, Hg-porosimetry and N2-adsorption. The evaluation involved determining the vulcanization characteristics… More >

  • Open Access

    ARTICLE

    Thermal-Mechanical and Thermodynamic Properties of Graphene Sheets using a Modified Nosé-Hoover Thermostat

    Ching-Feng Yu1, Wen-Hwa Chen1,2, Kun-Ling Chen1, Hsien-Chie Cheng2,3

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 203-229, 2013, DOI:10.3970/cmc.2013.036.203

    Abstract The investigation assesses the thermal-mechanical and thermodynamic properties of various graphene sheets using a modified Nosé-Hoover (NH) thermostat method incorporated with molecular dynamics (MD) simulation. The investigation begins with an exploration of their thermal-mechanical properties at atmospheric pressure, including Young’s modulus, shear modulus, Poisson’s ratio, specific heats and linear and volumetric coefficients of thermal expansion (CTE). Two definitions of the line change ratio (ΔL/L) are utilized to determine the linear CTE of graphene sheets, and the calculations are compared with each other and data in the literature. To estimate the volumetric CTE values, the Connolly… More >

  • Open Access

    ARTICLE

    Effect of Interface Energy on Size-Dependent Effective Dynamic Properties of Nanocomposites with Coated Nano-Fibers

    Xue-Qian Fang1,2, Ming-Juan Huang1, Jun-Ying Wu3, Guo-Quan Nie1, Jin-Xi Liu1

    CMC-Computers, Materials & Continua, Vol.33, No.2, pp. 199-211, 2013, DOI:10.3970/cmc.2013.033.199

    Abstract In nanocomposites, coated nano-fibers are often used to obtain good performance, and the high interface-to-volume ratio shows great effect on the macroscopic effective properties of nanocomposites. In this study, the effect of interface energy around the unidirectional coated nanofibers on the effective dynamic effective properties is explicitly addressed by effective medium method and wave function expansion method. The multiple scattering resulting from the series coating nano-fibers is reduced to the problem of one typical nano-fiber in the effective medium. The dynamic effective shear modulus is obtained on the basis of the derived imperfect interface conditions. More >

  • Open Access

    ARTICLE

    An Investigation on Dynamic Properties of Aluminium Alloy Foam Using Modified Large Scale SHPB Based on Dispersion Correction

    H.H. Luo1, Z.H. Tan1,2, X. Han1, C. Chen1

    CMC-Computers, Materials & Continua, Vol.32, No.1, pp. 1-14, 2012, DOI:10.3970/cmc.2012.032.001

    Abstract The dynamic properties of aluminium alloy foam were investigated by using split Hopkinson pressure bar (SHPB) with diameter of 40 mm. The aluminium alloy pressure bar and pulse shape technique were used to modify the traditional SHPB due to the low impedance of aluminium alloy foam. Wave dispersion correction on the aluminium alloy pressure bar was studied by Fourier series. And the finite element numerical simulation was also performed to demonstrate and validate the dispersion correction results by Fourier series method. The reflected and transmitted wave measured in SHPB experiments were corrected by the backward More >

Displaying 1-10 on page 1 of 13. Per Page