Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Quasi-Static and Low-Frequency Dynamic Mechanical Analysis Characterization of Graphene Nanoplatelets/Glass Fabric/Bisphenol-A-Based Epoxy Nanocomposites

    Santhanakrishnan Mamallan1, Venkateshwaran Narayanan1,*, Canungo Bhimarao Ragothaman2

    Journal of Polymer Materials, Vol.41, No.3, pp. 105-116, 2024, DOI:10.32604/jpm.2024.056744 - 30 September 2024

    Abstract Glass fabric/polymer composites are widely used in various industrial applications due to their lightweight, exceptional strength, and fatigue resistance. Graphene nanoplatelets, a recently developed type of carbon material, stand out as unique nanofillers due to their 2D quantum confinement and expansive surface area within a polymer matrix. These features make them more effective than traditional carbon nanofillers at enhancing a range of properties. In this study, 3-weight % of graphene nanoplatelets with epoxy resin were used for investigation by varying sonication durations (0, 20, 40, and 60 min) using an ultrasonic bath sonicator. The laminates More >

  • Open Access

    ARTICLE

    Crystallization and Dynamic Mechanical Behavior of Coir Fiber Reinforced Poly(Butylene Succinate) Biocomposites

    Xu Yan1, Changheng Liu2, Liang Qiao1, Kaili Zhu2, Hongsheng Tan1,*, Shuhua Dong1, Zhitao Lin1

    Journal of Renewable Materials, Vol.10, No.4, pp. 1039-1048, 2022, DOI:10.32604/jrm.2022.017239 - 02 November 2021

    Abstract The crystallization behavior, crystal morphology and form, and viscoelastic behavior of poly(butylene succinate) (PBS) and coir fiber/PBS composites (CPB) were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). The results of DSC measurement show that the crystallization temperature increases with the filling of coir fibers. POM images reveal that the spherulitic size and crystallization behavior of PBS are influenced by the coir fibers in the composites. XRD curves show that the crystal form of pure PBS and CPB are remaining almost identical. In addition, the More >

  • Open Access

    ARTICLE

    Effect of Fiber Loadings and Treatment on Dynamic Mechanical, Thermal and Flammability Properties of Pineapple Leaf Fiber and Kenaf Phenolic Composites

    M. Asim1, M. Jawaid1,2*, M. Nasir3, N. Saba1

    Journal of Renewable Materials, Vol.6, No.4, pp. 383-393, 2018, DOI:10.7569/JRM.2017.634162

    Abstract This study deals with the analysis of dynamic mechanical, thermal and flammability properties of treated and untreated pineapple leaf fiber (PALF) and kenaf fiber (KF) phenolic composites. Results indicated that storage modulus was decreased for all composites with increases in temperature and pattern of slopes for all composites, having almost the same values of E' at glass transition temperature (Tg). The peak of the loss modulus of pure phenolic composites was shown to be much less. After the addition of kenaf/PALF, peaks were higher and shifted towards a high temperature. The Tan delta peak height More >

  • Open Access

    ARTICLE

    Bio-Based High Functionality Polyols and Their Use in 1K Polyurethane Coatings

    Thomas J. Nelson, Lindsey Bultema, Neal Eidenschink, Dean C. Webster*

    Journal of Renewable Materials, Vol.1, No.2, pp. 141-153, 2013, DOI:10.7569/JRM.2013.634113

    Abstract Bio-based polyols with high functionality were successfully synthesized by ring-opening epoxidized sucrose esters of soybean oil with methanol under acidic conditions, and were subsequently formulated with blocked isocyanates to form one package polyurethanes (1KPU). The bio-based polyols were characterized by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1 H-NMR) spectroscopy, and Brookfi eld viscosity. Bio-based coatings were prepared by formulating the polyols with blocked polyisocyanates based on isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI). Two types of bio-based polyols were synthesized and the ratio of NCO:OH functional groups was More >

Displaying 1-10 on page 1 of 4. Per Page