Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    PROCEEDINGS

    Transient Analysis and Nonlinear Tribo-Dynamics of Marine Offset-Halves Journal Bearing Under Step Loading

    Kai Wang1,2,3, Lihua Yang1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011018

    Abstract Although offset-halves journal bearings (OHJBs) are widely used in marine powertrains, the research on nonlinear tribo-dynamics is still limited, particularly under dynamic loading. To overcome such limitations, this study proposes a novel dynamic model that couples the influences of step load and thermoelastohydrodynamic (TEHD) effect. Based on the numerical model, a transient TEHD analysis for dynamically loaded OHJBs is done. Moreover, a modified stability criterion is developed. Nonlinear behaviors and transient stability of OHJBs under step load are systematically studied. The correlations of bearing characteristics such as the maximum film temperature, minimum film thickness, maximum More >

  • Open Access

    ARTICLE

    Ply-by-Ply Failure Analysis of Laminates Under Dynamic Loading

    Ravi Joshi*, P. Pal

    Sound & Vibration, Vol.55, No.2, pp. 173-190, 2021, DOI:10.32604/sv.2021.011387 - 21 April 2021

    Abstract Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration. The study investigates the first ply failure load, followed by the detection of successive ply failures along with their failure modes using various failure theories. Some of the well-established failure theories, mostly used by the researchers, are considered for the failure prediction in laminates. The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN. The ply-discount stiffness More >

  • Open Access

    ARTICLE

    Dynamic Anti-plane Crack Analysis in Functional Graded Piezoelectric Semiconductor Crystals

    J. Sladek1,2, V. Sladek1, E. Pan3, D.L. Young4

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.4, pp. 273-296, 2014, DOI:10.3970/cmes.2014.099.273

    Abstract This paper presents a dynamic analysis of an anti-plane crack in functionally graded piezoelectric semiconductors. General boundary conditions and sample geometry are allowed in the proposed formulation. The coupled governing partial differential equations (PDEs) for shear stresses, electric displacement field and current are satisfied in a local weak-form on small fictitious subdomains. The derived local integral equations involve one order lower derivatives than the original PDEs. All field quantities are approximated by the moving least-squares (MLS) scheme. After performing spatial integrations, we obtain a system of ordinary differential equations for the involved nodal unknowns. It More >

  • Open Access

    ARTICLE

    Transient Wave Propagation in a Functionally Graded Slab and Multilayered Medium Subjected to Dynamic Loadings

    Chien-Ching Ma1,2, Yi-Hsien Lin2, Shih-Hao Lin2

    CMC-Computers, Materials & Continua, Vol.31, No.1, pp. 37-64, 2012, DOI:10.3970/cmc.2012.031.037

    Abstract In this article, the transient response in a functionally graded material (FGM) slab is analyzed by Laplace transform technique. The numerical Laplace inversion (Durbin's formula) is used to calculate the dynamic behavior of the FGM slab. The slab is subjected an uniform loading at the upper surface, and the lower surface are assumed to be traction-free or fixed conditions. The analytical solutions are presented in the transform domain and the numerical Laplace inversion is performed to obtain the transient response in time domain. To take the accuracy and computational efficiency in consideration, Durbin's method is More >

  • Open Access

    ARTICLE

    Crack Analysis in Piezoelectric Solids with Energetically Consistent Boundary Conditions by the MLPG

    J. Sladek1, V. Sladek1, Ch. Zhang2, M. Wünsche2

    CMES-Computer Modeling in Engineering & Sciences, Vol.68, No.2, pp. 185-220, 2010, DOI:10.3970/cmes.2010.068.185

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed to solve initial-boundary value crack problems of piezoelectric solids with nonlinear electrical boundary conditions on crack faces. Homogeneous and continuously varying material properties of the piezoelectric solid are considered. Stationary governing equations for electrical fields and the elastodynamic equations with an inertial term for mechanical 2-D fields are considered. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of displacements and electric potential are approximated by the Moving Least-Squares (MLS) scheme. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Method for Laminate Plates under Dynamic Loading

    J. Sladek1, V. Sladek1, P. Stanak1, Ch. Zhang2

    CMC-Computers, Materials & Continua, Vol.15, No.1, pp. 1-26, 2010, DOI:10.3970/cmc.2010.015.001

    Abstract A meshless local Petrov-Galerkin (MLPG) method is applied to solve laminate plate problems described by the Reissner-Mindlin theory. Both stationary and transient dynamic loads are analyzed here. The bending moment and the shear force expressions are obtained by integration through the laminated plate for the considered constitutive equations in each lamina. The Reissner-Mindlin theory reduces the original three-dimensional (3-D) thick plate problem to a two-dimensional (2-D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding this node. The weak-form on small More >

  • Open Access

    ARTICLE

    Biodynamic Loading in Orthopaedic Tissue Engineering

    S. Williams1, G. Reilly2, A. Sittichokechaiwut2, D. A. Clarke2, T. Nickel1, L. Mejia1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 137-138, 2006, DOI:10.32604/mcb.2006.003.137

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Rate Dependent Constitutive Model for Glass-Fibre / Epoxy-Matrix Woven Fabrics

    S. Marguet1, P. Rozycki1, L. Gornet1

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 119-136, 2006, DOI:10.3970/cmc.2006.004.119

    Abstract This paper deals with the modelling until rupture of composite structures made of glass-fibre / epoxy-resin woven fabrics submitted to dynamic loadings. The model is built at the mesoscale of the elementary ply. It takes into account the slightly nonlinear brittle behaviour of the fibres under tensile sollicitations, their nonlinear behaviour in compression as well as the strongly non linear and irreversible behaviour of the ply in shear. Strain rate effects are also introduced and special attention is paid to the objectivity of the model in the context of finite element calculation. Therefore the choice… More >

Displaying 1-10 on page 1 of 8. Per Page