Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    PROCEEDINGS

    Numerical Study on the Sloshing and Thermodynamic Characteristics of Liquid Hydrogen Storage Tank in Hydrogen-Powered Aircraft

    Zhibo Chen1, Jingfa Li1,*, Bo Yu1, Jianli Li1, Wei Zhang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011004

    Abstract Using liquid hydrogen as fuel is helpful to the aviation industry to achieve the goal of carbon peak and carbon neutrality. However, the liquid hydrogen storage tank will inevitably slosh during the use inhydrogen-powered aircraft, thus it is necessary to study the thermodynamic characteristics of liquid hydrogen storage tank during the sloshing process. In this paper, the thermodynamic behavior of liquid hydrogen storage tank under external excitation is studied by using Volume of Fluid(VOF) model and Lee model through numerical simulation methods. The changes of pressure and temperature in the process of tank sloshing under… More >

  • Open Access

    ARTICLE

    Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls

    Lianhua Ma1, Min Huang1, Linfeng Han2,*

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 853-869, 2024, DOI:10.32604/sdhm.2024.051374 - 20 September 2024

    Abstract Given the complexities of reinforced soil materials’ constitutive relationships, this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account. A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language, and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls. The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed, and the dynamic reactions of the two types More >

  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671 - 23 August 2024

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

  • Open Access

    ARTICLE

    Influence of Surface Ice Roughness on the Aerodynamic Performance of Wind Turbines

    Xin Guan1,2,*, Mingyang Li1, Shiwei Wu1, Yuqi Xie1, Yongpeng Sun1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2029-2043, 2024, DOI:10.32604/fdmp.2024.049499 - 23 August 2024

    Abstract The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines. In particular, two icing processes (frost ice and clear ice) were examined by combining the FENSAP-ICE and FLUENT analysis tools. The ice type on the blade surfaces was predicted by using a multi-time step method. Accordingly, the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated. The results indicate that More >

  • Open Access

    ARTICLE

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

    Yuanjun Dai1,2,3,*, Zetao Deng1, Baohua Li2, Lei Zhong1, Jianping Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1517-1537, 2024, DOI:10.32604/fdmp.2024.046828 - 23 July 2024

    Abstract A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine (ASWT). Two ASWTs are considered, a prototypical version and an improved version. It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades are α = 30°, α = 55°, α = 60°, respectively and the blade thickness is 4 mm. For a velocity V = 10 m/s, a tip speed ratio (TSR) = 1.58 and 2, the maximum C values More > Graphic Abstract

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

  • Open Access

    ARTICLE

    Impact of Blade-Flapping Vibration on Aerodynamic Characteristics of Wind Turbines under Yaw Conditions

    Shaokun Liu1, Zhiying Gao1,2,*, Rina Su1,2, Mengmeng Yan1, Jianwen Wang1,2

    Energy Engineering, Vol.121, No.8, pp. 2213-2229, 2024, DOI:10.32604/ee.2024.049616 - 19 July 2024

    Abstract Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied, the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood. This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics (CFD). In the CFD model, the blades are segmented radially to comprehensively analyze the distribution patterns of torque, axial load, and tangential load. The following results are… More >

  • Open Access

    ARTICLE

    Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method

    Xiaojun Huang1, Liaojun Zhang2,*, Hanbo Cui1, Gaoxing Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1647-1668, 2024, DOI:10.32604/cmes.2024.049124 - 20 May 2024

    Abstract This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method (DQM) for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution. Firstly, based on the first-order shear deformation theory, the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement, transverse displacement, and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section. Then, ignoring the shear deformation of the… More >

  • Open Access

    ARTICLE

    Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil

    Yuanjun Dai1,2, Jingan Cui1, Baohua Li1,*, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 771-786, 2024, DOI:10.32604/fdmp.2023.029584 - 28 March 2024

    Abstract A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient, lift coefficient, and drag coefficient. The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil; however, at small attack angles, its influence is significantly reduced. When the angle of attack exceeds the critical stall angle and the flap height is 1.5% of the chord length, the influence of the flap becomes very More >

  • Open Access

    ARTICLE

    Impact of Crosswind on Steady-State and Dynamic Performance of Natural Draft Dry Cooling Tower Group: A Numerical Analysis

    Xuhui Jiang1, Xi Zhang1, Song Wang1, Ruiqiong Wang1, Peng Zou1, Jingzhou Lu2, Xiaoxiao Li2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 193-216, 2024, DOI:10.32604/fhmt.2023.046832 - 21 March 2024

    Abstract This study investigates the performance of a natural draft dry cooling tower group in crosswind conditions through numerical analysis. A comprehensive three-dimensional model is developed to analyze the steady-state and dynamic behavior of the towers. The impact of wind speed and direction on heat rejection capacity and flow patterns is examined. Results indicate that crosswinds negatively affect the overall heat transfer capacity, with higher crosswind speeds leading to decreased heat transfer. Notably, wind direction plays a significant role, particularly at 0°. Moreover, tower response time increases with higher crosswind speeds due to increased turbulence and More >

  • Open Access

    ARTICLE

    Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, Xuejian Pei, He Lu, Shuzhen Zong

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 287-304, 2024, DOI:10.32604/fhmt.2023.045038 - 21 March 2024

    Abstract As compact and efficient heat exchange equipment, helically coiled tube-in-tube heat exchangers (HCTT heat exchangers) are widely used in many industrial processes. However, the thermal-hydraulic research of liquefied natural gas (LNG) as the working fluid in HCTT heat exchangers is rarely reported. In this paper, the characteristics of HCTT heat exchangers, in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube, are studied by numerical simulations. The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,… More >

Displaying 1-10 on page 1 of 26. Per Page