Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Bearing Fault Diagnosis with DDCNN Based on Intelligent Feature Fusion Strategy in Strong Noise

    Chaoqian He1,2, Runfang Hao1,2,*, Kun Yang1,2, Zhongyun Yuan1,2, Shengbo Sang1,2, Xiaorui Wang1,2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3423-3442, 2023, DOI:10.32604/cmc.2023.045718 - 26 December 2023

    Abstract Intelligent fault diagnosis in modern mechanical equipment maintenance is increasingly adopting deep learning technology. However, conventional bearing fault diagnosis models often suffer from low accuracy and unstable performance in noisy environments due to their reliance on a single input data. Therefore, this paper proposes a dual-channel convolutional neural network (DDCNN) model that leverages dual data inputs. The DDCNN model introduces two key improvements. Firstly, one of the channels substitutes its convolution with a larger kernel, simplifying the structure while addressing the lack of global information and shallow features. Secondly, the feature layer combines data from More >

Displaying 1-10 on page 1 of 1. Per Page