Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Real-Time CNN-Based Driver Distraction & Drowsiness Detection System

    Abdulwahab Ali Almazroi1,*, Mohammed A. Alqarni2, Nida Aslam3, Rizwan Ali Shah4

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2153-2174, 2023, DOI:10.32604/iasc.2023.039732 - 21 June 2023

    Abstract Nowadays days, the chief grounds of automobile accidents are driver fatigue and distractions. With the development of computer vision technology, a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them, reducing accidents. This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle. Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network (CNN) any changes by focusing on the eyes and mouth zone, precision… More >

Displaying 1-10 on page 1 of 1. Per Page