Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Drought Stress Alleviation in Chenopodium quinoa through Synergistic Effect of Silicon and Molybdenum via Triggering of SNF1-Associated Protein Kinase 2 Signaling Mechanism

    Asmat Askar1,#, Humaira Gul1,#, Mamoona Rauf1, Muhammad Arif2, Bokyung Lee3, Sajid Ali4,*, Abdulwahed Fahad Alrefaei5, Mikhlid H. Almutairi5, Zahid Ali Butt6, Ho-Youn Kim7, Muhammad Hamayun1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2455-2478, 2024, DOI:10.32604/phyton.2024.054508 - 30 September 2024

    Abstract Drought stress negatively impacts agricultural crop yields. By using mineral fertilizers and chemical regulators to encourage plant development and growth, its impact can be mitigated. The current study revealed that exogenous silicon (Si) (potassium silicate; K2Si2O5 at 1000 ppm) and molybdenum (Mo) (ammonium molybdate; (NH4)6Mo7O24•4H2O at 100 ppm) improved drought tolerance in quinoa (Chenopodium quinoa Willd). The research was conducted in a randomized complete block design with three biological replicates. The treatments comprised T0 (control, water spray), T4 (drought stress), and T1, T2, T3, T5, T6, and T7, i.e., foliar applications of silicon and molybdenum solutions individually… More >

  • Open Access

    ARTICLE

    Physiological Response Mechanism and Drought Resistance Evaluation of Passiflora edulis Sims under Drought Stress

    Binyang Zhao1, Fengchan Wu2, Guojun Cai3, Peiyu Xi2, Yulin Guo2, Anding Li2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1345-1363, 2024, DOI:10.32604/phyton.2024.050950 - 27 June 2024

    Abstract In order to explore the response mechanism of Passiflora edulis Sims to drought stress, the changes in morphological and physiological traits of Passiflora edulis Sims under different drought conditions were studied. A total of 7 germplasm resources of Passiflora edulis Sims were selected and tested under drought stress by the pot culture method under 4 treatment levels: 75%–80% (Control, CK) of maximum field water capacity, 55%–60% (Light Drought, LD) of maximum field water capacity, i.e., mild drought, 40%–45% (Moderate Drought, MD) of maximum field water capacity, i.e., moderate drought and 30%–35% (Severe Drought, SD) of maximum field water… More >

  • Open Access

    ARTICLE

    Involvement of the ABA- and H2O2-Mediated Ascorbate–Glutathione Cycle in the Drought Stress Responses of Wheat Roots

    Mengyuan Li1, Zhongye Gao1,2, Lina Jiang1, Leishan Chen1,2,*, Jianhui Ma1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 329-342, 2024, DOI:10.32604/phyton.2024.046976 - 27 February 2024

    Abstract Abscisic acid (ABA), hydrogen peroxide (H2O2) and ascorbate (AsA)–glutathione (GSH) cycle are widely known for their participation in various stresses. However, the relationship between ABA and H2O2 levels and the AsA–GSH cycle under drought stress in wheat has not been studied. In this study, a hydroponic experiment was conducted in wheat seedlings subjected to 15% polyethylene glycol (PEG) 6000–induced dehydration. Drought stress caused the rapid accumulation of endogenous ABA and H2O2 and significantly decreased the number of root tips compared with the control. The application of ABA significantly increased the number of root tips, whereas the application… More >

  • Open Access

    ARTICLE

    Transcriptomic Responses of Garlic (Allium sativum L.) to Heat and Drought Stresses

    Seung Hee Eom, Tae Kyung Hyun*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 3077-3090, 2023, DOI:10.32604/phyton.2023.044032 - 24 October 2023

    Abstract Heat and drought are prominent abiotic stressors that limit crop productivity and yield, particularly concerning climate change; therefore, understanding the molecular mechanisms underlying plant stress responses is crucial for stress-tolerant crop production. This study conducted a transcriptomic analysis to elucidate how garlic (Allium sativum L.) responds to drought and heat stress conditions. Transcriptome libraries were generated to identify differentially expressed genes (DEGs) induced by drought and heat stresses. Functional classification and clustering analysis of DEGs revealed stress-specific gene expression patterns. Notably, cell wall-related genes were implicated in the drought response, whereas heat stress was associated with More >

  • Open Access

    ARTICLE

    Seed Priming and Foliar Supplementation with β-aminobutyric Acid Alleviates Drought Stress through Mitigation of Oxidative Stress and Enhancement of Antioxidant Defense in Linseed (Linum usitatissimum L.)

    Tauqeer Ahmad Yasir1,2, Muhammad Ateeq1,3, Allah Wasaya1,2,*, Mubshar Hussain2, Naeem Sarwar2, Khuram Mubeen4, Mudassir Aziz4, Muhammad Aamir Iqbal5, Chukwuma C. Ogbaga6, Ibrahim Al-Ashkar7, Md Atikur Rahman8, Ayman El Sabagh9,10,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 3113-3131, 2023, DOI:10.32604/phyton.2023.029502 - 24 October 2023

    Abstract Drought is one of the critical limitations to agricultural soils and crop plants. Scarcity of water is increasing due to climate change that lead to increasing threats to global food security. Therefore, ecofriendly and cost effective strategies are highly desirable for mitigating drought stress along with sustainable and smart agricultural production. The aim of the study was to mitigate DS using seed priming and exogenous supplementation of β-aminobutyric acid (BABA) in linseed (Linum usitatissimum L.). Different doses (0, 50, 100 and 150 µM) of BABA were used for seed priming agent and foliar spraying under three… More >

  • Open Access

    ARTICLE

    Transcriptome and Metabolome Revealed the Mechanism of NtBRL3 Overexpression Tobacco (Nicotiana tabacum L. K326) in Response to Drought Stress

    Jing Yang, Tianxiunan Pu, Ke Wan, Linqi Wang, Yuanshuai Shi, Xu Luo, Jie Tan, Dongmei Wang, Yang Liu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2555-2576, 2023, DOI:10.32604/phyton.2023.030301 - 28 July 2023

    Abstract Drought has severely affected the yield and quality of commercial crops. The BRI1 family plays an important role in plant response to drought stress, and BRL3 gene plays an important role in the study of drought in Arabidopsis thaliana. In this study, NtBRL3 was constructed as a vector and genetically transformed to obtain ‘N. Tobacco K326’ overexpression of NtBRL3. The enzyme activities of transgenic tobacco and wild-type tobacco were measured and transcriptome and metabolome analyses were performed. The results showed that the antioxidant enzymes of transgenic tobacco were more active under drought conditions, and 85 significantly differentially metabolites and More >

  • Open Access

    ARTICLE

    Rice E3 Ligase-Like Protein OsPIAL1 Positively Regulated the Drought Stress Response but Negatively Regulated the Salt Stress Response

    Sang Ik Song*

    Phyton-International Journal of Experimental Botany, Vol.92, No.7, pp. 2017-2034, 2023, DOI:10.32604/phyton.2023.027469 - 29 May 2023

    Abstract Small ubiquitin-like modifier (SUMO) E3 ligases that facilitate the conjugation of SUMO proteins to target substrates contain an SP-RING domain which is like the RING domain found in ubiquitin E3 ligases. In this study, we isolated and characterized the Oryza sativa protein inhibitor of activated STAT like1 (OsPIAL1) containing SP-RING domains, as the rice homolog of Arabidopsis PIALs. OsPIAL1 interacts with OsSUMO proteins but does not interact with rice SUMO-conjugating enzymes (OsSCEs). An analysis of transgenic rice plant shows that OsPIAL1 is involved in SUMO conjugation to SCEs but not in SUMO conjugation to substrates. In addition,… More >

  • Open Access

    ARTICLE

    Effects of Tsukamurella tyrosinosolvens P9 on growth, physiology and antioxdant enzyme of peanut under drought stress and after re-watering

    CHANGMEI LONG, TINGTING YANG, YUJIE HAN, LIZHEN HAN*

    BIOCELL, Vol.47, No.6, pp. 1417-1430, 2023, DOI:10.32604/biocell.2023.027485 - 19 May 2023

    Abstract Background: The plant-growth-promoting rhizobacterium Tsukamurella tyrosinosolvens is a rare strain of actinomycete, in order to recognize and expand the ecological functions of rare actinomycetes. Methods: In this experiment, we studied the effect of Tsukamurella tyrosinosolvens P9 on the drought resistance of peanut by inoculating peanut seedlings in pots and measuring the growth and physiological indicators of peanut under drought stress and re-watering conditions. Results: The results showed that during drought stress, the relative water content of the soil and leaves, chlorophyll content, and stomatal length, width, and aperture were significantly decreased while the levels of malondialdehyde (MDA), H2O2More >

  • Open Access

    ARTICLE

    Melatonin Promotes Rice Seed Germination under Drought Stress by Regulating Antioxidant Capacity

    Luqian Zhang1,#, Xilin Fang1,#, Nan Yu1, Jun Chen1, Haodong Wang1, Quansheng Shen1, Guanghui Chen2,*, Yue Wang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1571-1587, 2023, DOI:10.32604/phyton.2023.025481 - 09 March 2023

    Abstract Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings. Melatonin has been proven to play an important role in alleviating plant stress. However, its effect on seed germination under drought conditions is still poorly understood. Therefore, we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress. Rice seeds were treated with different concentrations of melatonin (i.e., 0, 20, 100, and 500 μM) and drought stress was simulated with 5% polyethylene glycol 6000 (PEG6000). The results showed that 100 μM melatonin can… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification and Characterisation of Abiotic Stress Responsive mTERF Gene Family in Amaranthus hypochondriacus

    Mortaza Hajyzadeh*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1649-1664, 2023, DOI:10.32604/phyton.2023.028028 - 09 March 2023

    Abstract Abiotic stresses at different growth stages in the life of plants negatively affect yield productivity. Therefore, plants, including Amaranthus hypochondriacus, develop adaptive strategies to face the stresses and expand functional diversification. In plants, the mitochondrial transcription termination factors (mTERF) are essential functions in regulation, and organelles (mitochondria and chloroplasts) control gene expression (OGE) under several stress conditions. Based on the in-silico-wide genome and transcriptome analysis, twenty-four mTERF genes were detected in the main targeted mitochondria organelles clustered into three different main groups. The chromosomal location and gene duplication analysis indicated one segmental and one tandem duplication in… More >

Displaying 1-10 on page 1 of 35. Per Page