Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Optimization of the Drag Forces of Shell Janus Micromotor: A Study Based on Hydrodynamical Analysis and Numerical Simulation

    Qiang Wang, Zhen Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 443-462, 2022, DOI:10.32604/cmes.2022.015717 - 29 November 2021

    Abstract Micromotors are widely used in cell operation, drug delivery and environmental decontamination due to their small size, low energy consumption and large propelling power. Compared to traditional Janus micromotor, the shell Janus micromotor has better motion performance. However, the structural optimization of its motion performance is still unclear. The main factor restricting the motion performance of shell Janus micromotors is the drag forces. In the current work, theoretical analysis and numerical simulation were applied to analyze the drag forces of shell Janus micromotors. This study aims to design the optimum structure of shell Janus micromotors More >

  • Open Access

    ARTICLE

    CFD and Experimental Investigations of Drag Force on Spherical Leak Detector in Pipe Flows at High Reynolds Number

    ShiXu Guo1, Shili Chen1, Xinjing Huang1, Yu Zhang1, Shijiu Jin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.1, pp. 59-80, 2014, DOI:10.3970/cmes.2014.101.059

    Abstract Spherical leak detectors can detect very tiny leakage in pipelines and have low risk of blockage. In this paper the passing ability of the detector in the vertical segment of a pipe was studied using CFD simulations and experiments. The Reynolds number for the sphere exceeds 104 at the economical velocity range for oil pipelines, and there were few researches related to the hydrodynamic force on the sphere by the pipe flow at high Reynolds number. For sphere with different sizes and density, and at different flow rates, more than 100 3-D steady numerical simulations were… More >

  • Open Access

    ARTICLE

    A Hydrodynamic Assessment of a Remotely Operated Underwater Vehicle Based on Computational Fluid Dynamic – Part 1 – Numerical Simulation

    Christian Boe, Jose Rodriguez, Carlos Plazaola, Ilka Banfield A maly Fong, Rony Caballero, Adan Vega

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.2, pp. 165-177, 2013, DOI:10.3970/cmes.2013.090.165

    Abstract The authors have developed a remote operate vehicle (ROV) that allow carried out highly risky task, in confined space such as inside of submerged sewers and pipes systems, areas were commercial ROV may not provide good performing. In addition, this ROV is low cost. This paper analyses based on the computational fluid dynamic the hydrodynamic performance of this ROV. The first part of the paper presents the theoretical approach and introduces the finite volume model developed in order to complete the study. Results of the model compare with published research shows good agreement. The second More >

  • Open Access

    ARTICLE

    Slow Motion of a General Axisymmetric Slip Particle Along Its Axis of Revolution and Normal to One or Two Plane Walls

    Huan J. Keh1, Yu C. Chang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.3, pp. 225-254, 2010, DOI:10.3970/cmes.2010.062.225

    Abstract A theoretical study of the Stokes flow caused by a rigid particle of revolution translating axisymmetrically perpendicular to two parallel plane walls at an arbitrary position between them in a viscous fluid, which may slip at the particle surface, is presented. A method of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solution of the fluid velocity field that satisfies the boundary conditions at the plane walls and at infinity. The slip… More >

  • Open Access

    ARTICLE

    In Vitro Measurement and Calculation of Drag Force on Iliac Limb Stentgraft in a Compliant Arterial Wall Model

    A. Sinha Roy*, K. West, R. S. Rontala1, R. K. Greenberg2, R. K. Banerje1,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 211-226, 2007, DOI:10.3970/mcb.2007.004.211

    Abstract Interventional treatment of aortic aneurysms using endovascular stentgrafting is a minimally invasive technique. Following device implantation, transient drag forces act on the stentgraft. When the drag force exceeds the fixation force, complications like stentgraft migration, endoleaks and stentgraft failure occur. In such a scenario the device becomes unstable, causing concern over the long-term durability of endovascular repairs. The objective of this study is: 1) to measure the drag force on iliac limb stentgraft, having a distal diameter that is half the size of the proximal end, in an in vitro experiment; 2) to calculate the drag… More >

Displaying 1-10 on page 1 of 5. Per Page