Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    A Cascading Fault Path Prediction Method for Integrated Energy Distribution Networks Based on the Improved OPA Model under Typhoon Disasters

    Yue He1, Yaxiong You1, Zhian He1, Haiying Lu1, Lei Chen2,*, Yuqi Jiang2, Hongkun Chen2

    Energy Engineering, Vol.121, No.10, pp. 2825-2849, 2024, DOI:10.32604/ee.2024.052371 - 11 September 2024

    Abstract In recent times, the impact of typhoon disasters on integrated energy active distribution networks (IEADNs) has received increasing attention, particularly, in terms of effective cascading fault path prediction and enhanced fault recovery performance. In this study, we propose a modified ORNL-PSerc-Alaska (OPA) model based on optimal power flow (OPF) calculation to forecast IEADN cascading fault paths. We first established the topology and operational model of the IEADNs, and the typical fault scenario was chosen according to the component fault probability and information entropy. The modified OPA model consisted of two layers: An upper-layer model to More >

  • Open Access

    ARTICLE

    A Distributed Photovoltaics Ordering Grid-Connected Method for Analyzing Voltage Impact in Radial Distribution Networks

    Cuiping Li1, Kunqi Gao1, Can Chen2, Junhui Li1,*, Xiaoxiao Wang2, Yinchi Shao2, Xingxu Zhu1

    Energy Engineering, Vol.121, No.10, pp. 2937-2959, 2024, DOI:10.32604/ee.2024.052167 - 11 September 2024

    Abstract In recent years, distributed photovoltaics (DPV) has ushered in a good development situation due to the advantages of pollution-free power generation, full utilization of the ground or roof of the installation site, and balancing a large number of loads nearby. However, under the background of a large-scale DPV grid-connected to the county distribution network, an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV. Therefore, a DPV orderly grid-connected method based on photovoltaics grid-connected order degree (PGOD) is proposed. This method… More >

  • Open Access

    ARTICLE

    EV Charging Station Load Prediction in Coupled Urban Transportation and Distribution Networks

    Benxin Li*, Xuanming Chang

    Energy Engineering, Vol.121, No.10, pp. 3001-3018, 2024, DOI:10.32604/ee.2024.051332 - 11 September 2024

    Abstract The increasingly large number of electric vehicles (EVs) has resulted in a growing concern for EV charging station load prediction for the purpose of comprehensively evaluating the influence of the charging load on distribution networks. To address this issue, an EV charging station load prediction method is proposed in coupled urban transportation and distribution networks. Firstly, a finer dynamic urban transportation network model is formulated considering both nodal and path resistance. Then, a finer EV power consumption model is proposed by considering the influence of traffic congestion and ambient temperature. Thirdly, the Monte Carlo method… More > Graphic Abstract

    EV Charging Station Load Prediction in Coupled Urban Transportation and Distribution Networks

  • Open Access

    ARTICLE

    Evaluation of Multi-Temporal-Spatial Scale Adjustment Capability and Cluster Optimization Operation Method for Distribution Networks with Distributed Photovoltaics

    Jiaxin Qiao1, Yuchen Hao2, Yingqi Liao3, Fang Liang3, Jing Bian1,*

    Energy Engineering, Vol.121, No.9, pp. 2655-2680, 2024, DOI:10.32604/ee.2024.049509 - 19 August 2024

    Abstract The massive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations. To accurately assess the flexible regulation capabilities of distribution stations, a multi-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics, considering different geographical locations, coverage areas, and response capabilities. Firstly, the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed, and a resource regulation capability model is established to quantify the adjustable range of different regulation resources. On… More >

  • Open Access

    ARTICLE

    An Algorithm for Short-Circuit Current Interval in Distribution Networks with Inverter Type Distributed Generation Based on Affine Arithmetic

    Yan Zhang1, Bowen Du2,*, Benren Pan1, Guannan Wang1, Guoqiang Xie1, Tong Jiang2

    Energy Engineering, Vol.121, No.7, pp. 1903-1920, 2024, DOI:10.32604/ee.2024.048718 - 11 June 2024

    Abstract During faults in a distribution network, the output power of a distributed generation (DG) may be uncertain. Moreover, the output currents of distributed power sources are also affected by the output power, resulting in uncertainties in the calculation of the short-circuit current at the time of a fault. Additionally, the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources. Thus, it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network. In this study, an affine arithmetic algorithm… More >

  • Open Access

    ARTICLE

    Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm

    Huanan Yu, Hangyu Li, He Wang, Shiqiang Li*

    Energy Engineering, Vol.121, No.6, pp. 1535-1555, 2024, DOI:10.32604/ee.2024.046936 - 21 May 2024

    Abstract The escalating deployment of distributed power sources and random loads in DC distribution networks has amplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimal configuration of measurement points, this paper presents an optimal configuration scheme for fault location measurement points in DC distribution networks based on an improved particle swarm optimization algorithm. Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing. The model aims to achieve the minimum number of measurement points while attaining the best compressive sensing reconstruction effect. It incorporates constraints from… More >

  • Open Access

    ARTICLE

    Knowledge-Based Efficient N-1 Analysis Calculation Method for Urban Distribution Networks with CIM File Data

    Lingyu Liang1, Xiangyu Zhao1,*, Wenqi Huang1, Liming Sun2,3, Ziyao Wang3, Yaosen Zhan2

    Energy Engineering, Vol.120, No.12, pp. 2839-2856, 2023, DOI:10.32604/ee.2023.042042 - 29 November 2023

    Abstract The N-1 criterion is a critical factor for ensuring the reliable and resilient operation of electric power distribution networks. However, the increasing complexity of distribution networks and the associated growth in data size have created a significant challenge for distribution network planners. To address this issue, we propose a fast N-1 verification procedure for urban distribution networks that combines CIM file data analysis with MILP-based mathematical modeling. Our proposed method leverages the principles of CIM file analysis for distribution network N-1 analysis. We develop a mathematical model of distribution networks based on CIM data and… More >

  • Open Access

    ARTICLE

    Risk Analysis Using Multi-Source Data for Distribution Networks Facing Extreme Natural Disasters

    Jun Yang*, Nannan Wang, Jiang Wang, Yashuai Luo

    Energy Engineering, Vol.120, No.9, pp. 2079-2096, 2023, DOI:10.32604/ee.2023.028653 - 03 August 2023

    Abstract Distribution networks denote important public infrastructure necessary for people’s livelihoods. However, extreme natural disasters, such as earthquakes, typhoons, and mudslides, severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life. Therefore, considering the requirements for distribution network disaster prevention and mitigation, there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions. This paper accesses multi-source data, presents the data quality improvement methods of distribution networks, and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using More >

  • Open Access

    ARTICLE

    Research on Coordinated Development and Optimization of Distribution Networks at All Levels in Distributed Power Energy Engineering

    Zhuohan Jiang1, Jingyi Tu1, Shuncheng Liu1, Jian Peng1, Guang Ouyang2,*

    Energy Engineering, Vol.120, No.7, pp. 1655-1666, 2023, DOI:10.32604/ee.2023.026981 - 04 May 2023

    Abstract The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels. This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions. The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales. More >

  • Open Access

    ARTICLE

    Line Fault Detection of DC Distribution Networks Using the Artificial Neural Network

    Xunyou Zhang1,2,*, Chuanyang Liu1,3, Zuo Sun1

    Energy Engineering, Vol.120, No.7, pp. 1667-1683, 2023, DOI:10.32604/ee.2023.025186 - 04 May 2023

    Abstract A DC distribution network is an effective solution for increasing renewable energy utilization with distinct benefits, such as high efficiency and easy control. However, a sudden increase in the current after the occurrence of faults in the network may adversely affect network stability. This study proposes an artificial neural network (ANN)-based fault detection and protection method for DC distribution networks. The ANN is applied to a classifier for different faults on the DC line. The backpropagation neural network is used to predict the line current, and the fault detection threshold is obtained on the basis More >

Displaying 1-10 on page 1 of 18. Per Page