Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (490)
  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

    Bin Ou1,2,3,4, Haoquan Chi1,3, Xu’an Qian1,3, Shuyan Fu1,3, Zhirui Miao1,3, Dingzhu Zhao1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.074757 - 29 January 2026

    Abstract Deformation prediction for extra-high arch dams is highly important for ensuring their safe operation. To address the challenges of complex monitoring data, the uneven spatial distribution of deformation, and the construction and optimization of a prediction model for deformation prediction, a multipoint ultrahigh arch dam deformation prediction model, namely, the CEEMDAN-KPCA-GSWOA-KELM, which is based on a clustering partition, is proposed. First, the monitoring data are preprocessed via variational mode decomposition (VMD) and wavelet denoising (WT), which effectively filters out noise and improves the signal-to-noise ratio of the data, providing high-quality input data for subsequent prediction… More > Graphic Abstract

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

  • Open Access

    ARTICLE

    Dual Layer Source Grid Load Storage Collaborative Planning Model Based on Benders Decomposition: Distribution Network Optimization Considering Low-Carbon and Economy

    Jun Guo1,*, Maoyuan Chen1, Yuyang Li1, Sibo Feng2,3, Guangyu Fu3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.068894 - 27 January 2026

    Abstract The author proposes a dual layer source grid load storage collaborative planning model based on Benders decomposition to optimize the low-carbon and economic performance of the distribution network. The model plans the configuration of photovoltaic (3.8 MW), wind power (2.5 MW), energy storage (2.2 MWh), and SVC (1.2 Mvar) through interaction between upper and lower layers, and modifies lines 2–3, 8–9, etc. to improve transmission capacity and voltage stability. The author uses normal distribution and Monte Carlo method to model load uncertainty, and combines Weibull distribution to describe wind speed characteristics. Compared to the traditional… More >

  • Open Access

    ARTICLE

    Impact of Window Layers on Selenium Distribution and Photovoltaic Performance in CdSexTe1−x/CdTe Solar Cells

    Junyan Tian1, Qingyuan Zhang1, Lili Wu1,2,*, Xia Hao1,2, Guanggen Zeng1, Wenwu Wang1, Jingquan Zhang1,2

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076362 - 26 January 2026

    Abstract The incorporation of the Se element in CdTe solar cells is critical, while the low bandgap CdSexTe1−x, formed by the interdiffusion of CdTe and CdSe during device preparation, can promote the carrier lifetime. Different window layers formed by CdSe w/o MZO or CdS have different Se distributions. This paper systematically evaluates the influence of four types of window layers (CdSe, CdS/CdSe, MZO/CdSe and MZO/CdS/CdSe) on the performance of CdTe solar cells, and focuses on the correlation between the window layers and the Se distribution characteristic, carrier recombination mechanism, and device efficiency. The results show that CdSe… More >

  • Open Access

    ARTICLE

    Stress Redistribution Patterns in Road-Rail Double-Deck Bridges: Insights from Long-Term Bridge Health Monitoring

    Benyu Wang*, Ke Chen, Bingjian Wang#,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070137 - 08 January 2026

    Abstract To examine stress redistribution phenomena in bridges subjected to varying operational conditions, this study conducts a comprehensive analysis of three years of monitoring data from a 153-m double-deck road–rail steel arch bridge. An initial statistical comparison of sensor data distributions reveals clear temporal variations in stress redistribution patterns. XGBoost (eXtreme Gradient Boosting), a gradient-boosting machine learning (ML) algorithm, was employed not only for predictive modeling but also to uncover the underlying mechanisms of stress evolution. Unlike traditional numerical models that rely on extensive assumptions and idealizations, XGBoost effectively captures nonlinear and time-varying relationships between stress… More >

  • Open Access

    ARTICLE

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

    Heping Qi, Wenyao Sun*, Yi Zhao, Xiaoyi Qian, Xingyu Jiang

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069603 - 27 December 2025

    Abstract Virtual power plant (VPP) integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions, promote the consumption of renewable energy, and improve economic efficiency. In this paper, aiming at the uncertainty of distributed wind power and photovoltaic output, considering the coupling relationship between power, carbon trading, and green card market, the optimal operation model and bidding scheme of VPP in spot market, carbon trading market, and green card market are established. On this basis, through the Shapley value and independent risk contribution theory in cooperative game theory, the quantitative… More > Graphic Abstract

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

  • Open Access

    ARTICLE

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

    Yong Li, Yuxuan Chen*, Jiahui He, Guowei He, Chenxi Dai, Jingjing Tong, Wenting Lei

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069257 - 27 December 2025

    Abstract Ensuring reliable power supply in urban distribution networks is a complex and critical task. To address the increased demand during extreme scenarios, this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants (VPPs). The proposed strategy improves system flexibility and responsiveness by optimizing the power adjustment of flexible resources. In the proposed strategy, the Gaussian Process Regression (GPR) is firstly employed to determine the adjustable range of aggregated power within the VPP, facilitating an assessment of its potential contribution to power supply support. Then, an optimal dispatch model based on More > Graphic Abstract

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070858 - 09 December 2025

    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    PROCEEDINGS

    A New Analytical Method for Strength Prediction of Injection Molded Fiber Reinforced Thermoplastics Based on Progressive Delamination Failure Principle

    Dayong Huang1,2,*, Wenjun Wang1,2, Xiaofu Tang1,2, Pengfei Zhu3, Xianqiong Zhao3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012063

    Abstract Accurate prediction for the tensile properties (tensile modulus and strength) of injection molded fiber-reinforced thermoplastics (IMFT) plays an important role in the design of structures made with such composites. Based on the Laminate analogy approach (LAA), a unified distribution function (UDF) of tensile properties is derived by introducing the assumption that the fiber length distribution (FLD) and fiber orientation distribution (FOD) are independent of each other. The UDF of tensile properties is simplified by introducing the modified monotonic functions of fiber length and orientation factors (λL and λO). Compared with the tensile modulus and strength… More >

  • Open Access

    ARTICLE

    Experimental Study of Hydrogen Distribution in Natural Gas under Static Conditions

    Mengjie Wang1, Jingfa Li2,*, Bo Yu2, Nianrong Wang3, Xiaofeng Wang3, Tao Hu4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3055-3072, 2025, DOI:10.32604/fdmp.2025.071675 - 31 December 2025

    Abstract The adaptation of existing natural gas pipelines for hydrogen transportation has attracted increasing attention in recent years. Yet, whether hydrogen and natural gas stratify under static conditions remains a subject of debate, and experimental evidence is still limited. This study presents an experimental investigation of the concentration distribution of hydrogen–natural gas mixtures under static conditions. Hydrogen concentration was measured using a KTL-2000M-H hydrogen analyzer, with a measurement range of 0–30% (by volume), an accuracy of 1% full scale (FS), and a resolution of 0.01%. Experiments were conducted in a 300 cm riser, filled with uniformly… More >

Displaying 1-10 on page 1 of 490. Per Page