Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Border Sensitive Knowledge Distillation for Rice Panicle Detection in UAV Images

    Anitha Ramachandran, Sendhil Kumar K.S.*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 827-842, 2024, DOI:10.32604/cmc.2024.054768 - 15 October 2024

    Abstract Research on panicle detection is one of the most important aspects of paddy phenotypic analysis. A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based methods. Nevertheless, it entails many other challenges, including different illuminations, panicle sizes, shape distortions, partial occlusions, and complex backgrounds. Object detection algorithms are directly affected by these factors. This work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation (BSKD). It is designed to prioritize the preservation of knowledge in border areas through the use of feature distillation. Our feature-based knowledge distillation method More >

  • Open Access

    ARTICLE

    DPAL-BERT: A Faster and Lighter Question Answering Model

    Lirong Yin1, Lei Wang1, Zhuohang Cai2, Siyu Lu2,*, Ruiyang Wang2, Ahmed AlSanad3, Salman A. AlQahtani3, Xiaobing Chen4, Zhengtong Yin5, Xiaolu Li6, Wenfeng Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 771-786, 2024, DOI:10.32604/cmes.2024.052622 - 20 August 2024

    Abstract Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems. However, with the constant evolution of algorithms, data, and computing power, the increasing size and complexity of these models have led to increased training costs and reduced efficiency. This study aims to minimize the inference time of such models while maintaining computational performance. It also proposes a novel Distillation model for PAL-BERT (DPAL-BERT), specifically, employs knowledge distillation, using the PAL-BERT model as the teacher model to train two student models: DPAL-BERT-Bi and DPAL-BERT-C. This research enhances the dataset More >

  • Open Access

    ARTICLE

    Optimizing Sustainability: Exergoenvironmental Analysis of a Multi-Effect Distillation with Thermal Vapor Compression System for Seawater Desalination

    Zineb Fergani1, Zakaria Triki1, Rabah Menasri1, Hichem Tahraoui1,2,*, Meriem Zamouche3, Mohammed Kebir4, Jie Zhang5, Abdeltif Amrane6,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 455-473, 2024, DOI:10.32604/fhmt.2024.050332 - 20 May 2024

    Abstract Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues. This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression (MED-TVC) system, a highly promising desalination technology. The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression. The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact, considering both energy and exergy aspects. The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process, providing a holistic… More >

  • Open Access

    ARTICLE

    LDAS&ET-AD: Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation

    Shuyi Li, Hongchao Hu*, Xiaohan Yang, Guozhen Cheng, Wenyan Liu, Wei Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2331-2359, 2024, DOI:10.32604/cmc.2024.047275 - 15 May 2024

    Abstract Adversarial distillation (AD) has emerged as a potential solution to tackle the challenging optimization problem of loss with hard labels in adversarial training. However, fixed sample-agnostic and student-egocentric attack strategies are unsuitable for distillation. Additionally, the reliability of guidance from static teachers diminishes as target models become more robust. This paper proposes an AD method called Learnable Distillation Attack Strategies and Evolvable Teachers Adversarial Distillation (LDAS&ET-AD). Firstly, a learnable distillation attack strategies generating mechanism is developed to automatically generate sample-dependent attack strategies tailored for distillation. A strategy model is introduced to produce attack strategies that… More >

  • Open Access

    ARTICLE

    Learning Epipolar Line Window Attention for Stereo Image Super-Resolution Reconstruction

    Xue Li, Hongying Zhang*, Zixun Ye, Xiaoru Huang

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2847-2864, 2024, DOI:10.32604/cmc.2024.047093 - 27 February 2024

    Abstract Transformer-based stereo image super-resolution reconstruction (Stereo SR) methods have significantly improved image quality. However, existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information. To address these challenges, this paper introduces a novel epipolar line window attention stereo image super-resolution network (EWASSR). For detail feature restoration, we design a feature extractor based on Transformer and convolutional neural network (CNN), which consists of (shifted) window-based self-attention ((S)W-MSA) and feature distillation and enhancement blocks (FDEB). This combination effectively… More >

  • Open Access

    ARTICLE

    Joint On-Demand Pruning and Online Distillation in Automatic Speech Recognition Language Model Optimization

    Soonshin Seo1,2, Ji-Hwan Kim2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2833-2856, 2023, DOI:10.32604/cmc.2023.042816 - 26 December 2023

    Abstract Automatic speech recognition (ASR) systems have emerged as indispensable tools across a wide spectrum of applications, ranging from transcription services to voice-activated assistants. To enhance the performance of these systems, it is important to deploy efficient models capable of adapting to diverse deployment conditions. In recent years, on-demand pruning methods have obtained significant attention within the ASR domain due to their adaptability in various deployment scenarios. However, these methods often confront substantial trade-offs, particularly in terms of unstable accuracy when reducing the model size. To address challenges, this study introduces two crucial empirical findings. Firstly,… More >

  • Open Access

    ARTICLE

    Decentralized Heterogeneous Federal Distillation Learning Based on Blockchain

    Hong Zhu*, Lisha Gao, Yitian Sha, Nan Xiang, Yue Wu, Shuo Han

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3363-3377, 2023, DOI:10.32604/cmc.2023.040731 - 08 October 2023

    Abstract Load forecasting is a crucial aspect of intelligent Virtual Power Plant (VPP) management and a means of balancing the relationship between distributed power grids and traditional power grids. However, due to the continuous emergence of power consumption peaks, the power supply quality of the power grid cannot be guaranteed. Therefore, an intelligent calculation method is required to effectively predict the load, enabling better power grid dispatching and ensuring the stable operation of the power grid. This paper proposes a decentralized heterogeneous federated distillation learning algorithm (DHFDL) to promote trusted federated learning (FL) between different federates… More >

  • Open Access

    ARTICLE

    Two-Stage Edge-Side Fault Diagnosis Method Based on Double Knowledge Distillation

    Yang Yang1, Yuhan Long1, Yijing Lin2, Zhipeng Gao1, Lanlan Rui1, Peng Yu1,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3623-3651, 2023, DOI:10.32604/cmc.2023.040250 - 08 October 2023

    Abstract With the rapid development of the Internet of Things (IoT), the automation of edge-side equipment has emerged as a significant trend. The existing fault diagnosis methods have the characteristics of heavy computing and storage load, and most of them have computational redundancy, which is not suitable for deployment on edge devices with limited resources and capabilities. This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation. First, we offer a clustering-based self-knowledge distillation approach (Cluster KD), which takes the mean value of the sample diagnosis results, clusters them, and takes… More >

  • Open Access

    ARTICLE

    A Weakly-Supervised Method for Named Entity Recognition of Agricultural Knowledge Graph

    Ling Wang, Jingchi Jiang*, Jingwen Song, Jie Liu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 833-848, 2023, DOI:10.32604/iasc.2023.036402 - 29 April 2023

    Abstract It is significant for agricultural intelligent knowledge services using knowledge graph technology to integrate multi-source heterogeneous crop and pest data and fully mine the knowledge hidden in the text. However, only some labeled data for agricultural knowledge graph domain training are available. Furthermore, labeling is costly due to the need for more data openness and standardization. This paper proposes a novel model using knowledge distillation for a weakly supervised entity recognition in ontology construction. Knowledge distillation between the target and source data domain is performed, where Bi-LSTM and CRF models are constructed for entity recognition. More >

  • Open Access

    ARTICLE

    Eye Strain Detection During Online Learning

    Le Quang Thao1,2,*, Duong Duc Cuong2, Vu Manh Hung3, Le Thanh Vinh3, Doan Trong Nghia4, Dinh Ha Hai3, Nguyen Nhan Nhi3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3517-3530, 2023, DOI:10.32604/iasc.2023.031026 - 17 August 2022

    Abstract The recent outbreak of the coronavirus disease of 2019 (Covid-19) has been causing many disruptions among the education systems worldwide, most of them due to the abrupt transition to online learning. The sudden upsurge in digital electronic devices usage, namely personal computers, laptops, tablets and smartphones is unprecedented, which leads to a new wave of both mental and physical health problems among students, for example eye-related illnesses. The overexposure to electronic devices, extended screen time usage and lack of outdoor sunlight have put a consequential strain on the student’s ophthalmic health because of their young… More >

Displaying 1-10 on page 1 of 16. Per Page