Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Multi-Attribute Couplings-Based Euclidean and Nominal Distances for Unlabeled Nominal Data

    Lei Gu*, Furong Zhang, Li Ma

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5911-5928, 2023, DOI:10.32604/cmc.2023.038127 - 29 April 2023

    Abstract Learning unlabeled data is a significant challenge that needs to handle complicated relationships between nominal values and attributes. Increasingly, recent research on learning value relations within and between attributes has shown significant improvement in clustering and outlier detection, etc. However, typical existing work relies on learning pairwise value relations but weakens or overlooks the direct couplings between multiple attributes. This paper thus proposes two novel and flexible multi-attribute couplings-based distance (MCD) metrics, which learn the multi-attribute couplings and their strengths in nominal data based on information theories: self-information, entropy, and mutual information, for measuring both More >

  • Open Access

    ARTICLE

    Performances of K-Means Clustering Algorithm with Different Distance Metrics

    Taher M. Ghazal1,2, Muhammad Zahid Hussain3, Raed A. Said5, Afrozah Nadeem6, Mohammad Kamrul Hasan1, Munir Ahmad7, Muhammad Adnan Khan3,4,*, Muhammad Tahir Naseem3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 735-742, 2021, DOI:10.32604/iasc.2021.019067 - 11 August 2021

    Abstract Clustering is the process of grouping the data based on their similar properties. Meanwhile, it is the categorization of a set of data into similar groups (clusters), and the elements in each cluster share similarities, where the similarity between elements in the same cluster must be smaller enough to the similarity between elements of different clusters. Hence, this similarity can be considered as a distance measure. One of the most popular clustering algorithms is K-means, where distance is measured between every point of the dataset and centroids of clusters to find similar data objects and More >

Displaying 1-10 on page 1 of 2. Per Page