Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (80)
  • Open Access

    ARTICLE

    Impact of Viscous Dissipation and Ohmic Heating on Natural Convection Heat Transfer in Thermo-Magneto Generated Plume

    Sahar Anwar1, Ghulam Rasool2,*, Muhammad Ashraf1, Uzma Ahmad1, Tao Sun2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1323-1341, 2024, DOI:10.32604/fhmt.2024.055314 - 30 October 2024

    Abstract The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field. In this study, the flow model is adapted to incorporate ohmic heating and viscous dissipation by including the respective terms in the energy equation. A mathematical model is formulated as a system of coupled partial differential equations to analyze the flow problem. Subsequently, a numerical solution is derived with stream function formulation for the system of coupled partial differential equations, which transmutes it into ordinary… More > Graphic Abstract

    Impact of Viscous Dissipation and Ohmic Heating on Natural Convection Heat Transfer in Thermo-Magneto Generated Plume

  • Open Access

    ARTICLE

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

    Haris Alam Zuberi1, Madan Lal1, Shivangi Verma1, Nurul Amira Zainal2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1137-1163, 2024, DOI:10.32604/cmes.2024.055493 - 27 September 2024

    Abstract Motivated by the widespread applications of nanofluids, a nanofluid model is proposed which focuses on uniform magnetohydrodynamic (MHD) boundary layer flow over a non-linear stretching sheet, incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature (CST) and Prescribed Surface Temperature (PST). The study employs a two-phase model for the nanofluid, coupled with thermophoresis and Brownian motion, to analyze the effects of key fluid parameters such as thermophoresis, Brownian motion, slip velocity, Schmidt number, Eckert number, magnetic parameter, and non-linear stretching parameter on… More > Graphic Abstract

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

  • Open Access

    ARTICLE

    Characteristics of Rock Mechanics Response and Energy Evolution Regime of Deep Reservoirs in the Bozhong Sag, Bohai Bay Basin

    Suogui Shang1, Kechao Gao1, Qingbin Wang1, Xinghua Zhang1, Pengli Zhou2,3,*, Jianhua Li2,3, Peng Chu2,3

    Energy Engineering, Vol.121, No.9, pp. 2505-2524, 2024, DOI:10.32604/ee.2024.050094 - 19 August 2024

    Abstract Hydraulic fracturing is a mature and effective method for deep oil and gas production, which provides a foundation for deep oil and gas production. One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions. In this work, based on outcrop core samples, high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag. Additionally, this study analyzes the deformation and damage law for rock under different stress conditions. Wherein, with a particular focus… More >

  • Open Access

    ARTICLE

    Finite Difference Approach on Magnetohydrodynamic Stratified Fluid Flow Past Vertically Accelerated Plate in Porous Media with Viscous Dissipation

    M. Sridevi1, B. Shankar Goud2, Ali Hassan3,4,*, D. Mahendar5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 939-953, 2024, DOI:10.32604/fhmt.2024.050929 - 11 July 2024

    Abstract This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation. It is assumed that the medium under study is a grey, non-scattered fluid that both fascinates and transmits radiation. The leading equations are discretized using the finite difference method (FDM). Using MATLAB software, the impacts of flow factors on flow fields are revealed with particular examples in graphs and a table. In this regard, FDM results show that the velocity and temperature gradients increase with an increase of Eckert More >

  • Open Access

    ARTICLE

    Film Flow of Nano-Micropolar Fluid with Dissipation Effect

    Abuzar Abid Siddiqui1, Mustafa Turkyilmazoglu2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2487-2512, 2024, DOI:10.32604/cmes.2024.050525 - 08 July 2024

    Abstract The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated. Five different types of nanoparticle samples are accounted for in this current study, namely gold Au, silver Ag, molybdenum disulfide MoS2, aluminum oxide Al2O3, and silicon dioxide SiO2. Blood, a micropolar fluid, serves as the common base fluid. An exact closed-form solution for this problem is derived for the first time in the literature. The results are particularly validated against those for the Newtonian fluid… More >

  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788 - 21 March 2024

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive More >

  • Open Access

    ARTICLE

    Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field

    Yasir Khan1, Safia Akram2,*, Maria Athar3, Khalid Saeed4, Alia Razia2, A. Alameer1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1501-1520, 2024, DOI:10.32604/cmes.2023.029878 - 17 November 2023

    Abstract The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applications in medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In this paper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of a Prandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation and an induced magnetic field. The equations for the current flow scenario are developed, incorporating relevant assumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and double… More >

  • Open Access

    PROCEEDINGS

    Thermodynamic Investigation with Synergetic Method on Inner Crack Growth Behavior at very High Cycle Fatigue Regime

    Yujia Liu1,2, Bo Xu1, Sen Tang3, Lang Li1, Chao He1, Qingyuan Wang1,2,3, Chong Wang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.010057

    Abstract This paper presents a thermodynamic characterization method for estimating the internal crack growth rate, which has been a puzzle in very high cycle fatigue research. A theoretical approach of surface temperature is established with crack size, initiation site, and time for thin sheet material. Infrared thermography is used to study the inner crack behavior and the heat dissipation phenomenon under 20 kHz vibration loading on high-strength stainless steel. A numerical simulation reveals the consequent temperature elevation on the surfaces by the heat generation at the crack tip and the heat conduction. Ultimately, the internal crack More >

  • Open Access

    ARTICLE

    An Experimental Investigation of Aero-Foil-Shaped Pin Fin Arrays

    Mainak Bhaumik1, Anirban Sur2,*, Kavita Dhanawade3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 467-486, 2023, DOI:10.32604/fhmt.2023.044605 - 30 November 2023

    Abstract Pin fins are widely used in applications where effective heat transfer is crucial. Their compact design, high surface area, and efficient heat transfer characteristics make them a practical choice for many thermal management applications. But for a high heat transfer rate and lightweight application, aerofoil shape pin fins are a good option. This work focuses on an experimental model analysis of pin-fins with aerofoil shapes. The results were evaluated between perforation, no perforation, inline, and staggered fin configurations. Aluminum is used to make the pin fins array. The experiment is carried out inside a wind… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

    Guiwu Lin, Kaige Liu, Yuliang Chen*, Yunpeng Ji, Rui Jiang

    Journal of Renewable Materials, Vol.11, No.11, pp. 3957-3975, 2023, DOI:10.32604/jrm.2023.028290 - 31 October 2023

    Abstract This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete. A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test. The failure modes, stress-strain whole curves, peak stress, peak strain, and energy dissipation capacity were systematically observed and revealed. Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete, corresponding to the enhancement of 81.75% and 22.90% on average. The addition of polyvinyl alcohol… More > Graphic Abstract

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

Displaying 1-10 on page 1 of 80. Per Page