Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    EDU-GAN: Edge Enhancement Generative Adversarial Networks with Dual-Domain Discriminators for Inscription Images Denoising

    Yunjing Liu1,, Erhu Zhang1,2,,*, Jingjing Wang3, Guangfeng Lin2, Jinghong Duan4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1633-1653, 2024, DOI:10.32604/cmc.2024.052611 - 18 July 2024

    Abstract Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue. Different from natural images, character images pay more attention to stroke information. However, existing models mainly consider pixel-level information while ignoring structural information of the character, such as its edge and glyph, resulting in reconstructed images with mottled local structure and character damage. To solve these problems, we propose a novel generative adversarial network (GAN) framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework, i.e., EDU-GAN. Unlike existing frameworks, the generator introduces the… More >

  • Open Access

    ARTICLE

    A Dual Discriminator Method for Generalized Zero-Shot Learning

    Tianshu Wei1, Jinjie Huang1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1599-1612, 2024, DOI:10.32604/cmc.2024.048098 - 25 April 2024

    Abstract Zero-shot learning enables the recognition of new class samples by migrating models learned from semantic features and existing sample features to things that have never been seen before. The problems of consistency of different types of features and domain shift problems are two of the critical issues in zero-shot learning. To address both of these issues, this paper proposes a new modeling structure. The traditional approach mapped semantic features and visual features into the same feature space; based on this, a dual discriminator approach is used in the proposed model. This dual discriminator approach can… More >

  • Open Access

    ARTICLE

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

    Sixian Chan1,2, Binghui Wu1, Guodao Zhang3, Yuan Yao4, Hongqiang Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 411-428, 2024, DOI:10.32604/cmes.2023.029485 - 22 September 2023

    Abstract In clinical practice, the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications. Measuring the amount of each type of urine sediment allows for screening, diagnosis and evaluation of kidney and urinary tract disease, providing insight into the specific type and severity. However, manual urine sediment examination is labor-intensive, time-consuming, and subjective. Traditional machine learning based object detection methods require hand-crafted features for localization and classification, which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments. Deep learning based object detection… More > Graphic Abstract

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

  • Open Access

    ARTICLE

    Deep Learning-Based Robust Morphed Face Authentication Framework for Online Systems

    Harsh Mankodiya1, Priyal Palkhiwala1, Rajesh Gupta1,*, Nilesh Kumar Jadav1, Sudeep Tanwar1, Osama Alfarraj2, Amr Tolba2, Maria Simona Raboaca3,4,*, Verdes Marina5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1123-1142, 2023, DOI:10.32604/cmc.2023.038556 - 31 October 2023

    Abstract The amalgamation of artificial intelligence (AI) with various areas has been in the picture for the past few years. AI has enhanced the functioning of several services, such as accomplishing better budgets, automating multiple tasks, and data-driven decision-making. Conducting hassle-free polling has been one of them. However, at the onset of the coronavirus in 2020, almost all worldly affairs occurred online, and many sectors switched to digital mode. This allows attackers to find security loopholes in digital systems and exploit them for their lucrative business. This paper proposes a three-layered deep learning (DL)-based authentication framework More >

  • Open Access

    ARTICLE

    A Multi-Task Motion Generation Model that Fuses a Discriminator and a Generator

    Xiuye Liu, Aihua Wu*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 543-559, 2023, DOI:10.32604/cmc.2023.039004 - 08 June 2023

    Abstract The human motion generation model can extract structural features from existing human motion capture data, and the generated data makes animated characters move. The 3D human motion capture sequences contain complex spatial-temporal structures, and the deep learning model can fully describe the potential semantic structure of human motion. To improve the authenticity of the generated human motion sequences, we propose a multi-task motion generation model that consists of a discriminator and a generator. The discriminator classifies motion sequences into different styles according to their similarity to the mean spatial-temporal templates from motion sequences of 17… More >

  • Open Access

    ARTICLE

    Multi-Generator Discriminator Network Using Texture-Edge Information

    Kyeongseok Jang1, Seongsoo Cho2, Kwang Chul Son3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3537-3551, 2023, DOI:10.32604/cmc.2023.030557 - 31 March 2023

    Abstract In the proposed paper, a parallel structure type Generative Adversarial Network (GAN) using edge and texture information is proposed. In the existing GAN-based model, many learning iterations had to be given to obtaining an output that was somewhat close to the original data, and noise and distortion occurred in the output image even when learning was performed. To solve this problem, the proposed model consists of two generators and three discriminators to propose a network in the form of a parallel structure. In the network, each edge information and texture information were received as inputs, More >

  • Open Access

    ARTICLE

    Copy-Move Geometric Tampering Estimation Through Enhanced SIFT Detector Method

    J. S. Sujin1,*, S. Sophia2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 157-171, 2023, DOI:10.32604/csse.2023.023747 - 01 June 2022

    Abstract Digital picture forgery detection has recently become a popular and significant topic in image processing. Due to advancements in image processing and the availability of sophisticated software, picture fabrication may hide evidence and hinder the detection of such criminal cases. The practice of modifying original photographic images to generate a forged image is known as digital image forging. A section of an image is copied and pasted into another part of the same image to hide an item or duplicate particular image elements in copy-move forgery. In order to make the forgeries real and inconspicuous,… More >

  • Open Access

    ARTICLE

    Soft Computing Based Discriminator Model for Glaucoma Diagnosis

    Anisha Rebinth1,*, S. Mohan Kumar2

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 867-880, 2022, DOI:10.32604/csse.2022.022955 - 08 February 2022

    Abstract In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD) using soft computing techniques is presented. As the biomedical images such as fundus images are often acquired in high resolution, the Region of Interest (ROI) for glaucoma diagnosis must be selected at first to reduce the complexity of any system. The DMGD system uses a series of pre-processing; initial cropping by the green channel’s intensity, Spatially Weighted Fuzzy C Means (SWFCM), blood vessel detection and removal by Gaussian Derivative Filters (GDF) and inpainting algorithms. Once the ROI has been selected, the numerical features such as More >

  • Open Access

    ARTICLE

    Reinforced CNN Forensic Discriminator to Detect Document Forgery by DCGAN

    Seo-young Lim, Jeongho Cho*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6039-6051, 2022, DOI:10.32604/cmc.2022.024862 - 14 January 2022

    Abstract Recently, the technology of digital image forgery based on a generative adversarial network (GAN) has considerably improved to the extent that it is difficult to distinguish it from the original image with the naked eye by compositing and editing a person's face or a specific part with the original image. Thus, much attention has been paid to digital image forgery as a social issue. Further, document forgery through GANs can completely change the meaning and context in a document, and it is difficult to identify whether the document is forged or not, which is dangerous.… More >

  • Open Access

    ARTICLE

    Perceptual Image Outpainting Assisted by Low-Level Feature Fusion and Multi-Patch Discriminator

    Xiaojie Li1, Yongpeng Ren1, Hongping Ren1, Canghong Shi2, Xian Zhang1, Lutao Wang1, Imran Mumtaz3, Xi Wu1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5021-5037, 2022, DOI:10.32604/cmc.2022.023071 - 14 January 2022

    Abstract Recently, deep learning-based image outpainting has made greatly notable improvements in computer vision field. However, due to the lack of fully extracting image information, the existing methods often generate unnatural and blurry outpainting results in most cases. To solve this issue, we propose a perceptual image outpainting method, which effectively takes the advantage of low-level feature fusion and multi-patch discriminator. Specifically, we first fuse the texture information in the low-level feature map of encoder, and simultaneously incorporate these aggregated features reusability with semantic (or structural) information of deep feature map such that we could utilize More >

Displaying 1-10 on page 1 of 10. Per Page