Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    A Novel Human Interaction Framework Using Quadratic Discriminant Analysis with HMM

    Tanvir Fatima Naik Bukht1, Naif Al Mudawi2, Saud S. Alotaibi3, Abdulwahab Alazeb2, Mohammed Alonazi4, Aisha Ahmed AlArfaj5, Ahmad Jalal1, Jaekwang Kim6,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1557-1573, 2023, DOI:10.32604/cmc.2023.041335 - 29 November 2023

    Abstract Human-human interaction recognition is crucial in computer vision fields like surveillance, human-computer interaction, and social robotics. It enhances systems’ ability to interpret and respond to human behavior precisely. This research focuses on recognizing human interaction behaviors using a static image, which is challenging due to the complexity of diverse actions. The overall purpose of this study is to develop a robust and accurate system for human interaction recognition. This research presents a novel image-based human interaction recognition method using a Hidden Markov Model (HMM). The technique employs hue, saturation, and intensity (HSI) color transformation to… More >

  • Open Access

    ARTICLE

    CNN Based Features Extraction and Selection Using EPO Optimizer for Cotton Leaf Diseases Classification

    Mehwish Zafar1, Javeria Amin2, Muhammad Sharif1, Muhammad Almas Anjum3, Seifedine Kadry4,5,6, Jungeun Kim7,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2779-2793, 2023, DOI:10.32604/cmc.2023.035860 - 08 October 2023

    Abstract Worldwide cotton is the most profitable cash crop. Each year the production of this crop suffers because of several diseases. At an early stage, computerized methods are used for disease detection that may reduce the loss in the production of cotton. Although several methods are proposed for the detection of cotton diseases, however, still there are limitations because of low-quality images, size, shape, variations in orientation, and complex background. Due to these factors, there is a need for novel methods for features extraction/selection for the accurate cotton disease classification. Therefore in this research, an optimized… More >

  • Open Access

    ARTICLE

    Home Automation-Based Health Assessment Along Gesture Recognition via Inertial Sensors

    Hammad Rustam1, Muhammad Muneeb1, Suliman A. Alsuhibany2, Yazeed Yasin Ghadi3, Tamara Al Shloul4, Ahmad Jalal1, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2331-2346, 2023, DOI:10.32604/cmc.2023.028712 - 06 February 2023

    Abstract Hand gesture recognition (HGR) is used in a numerous applications, including medical health-care, industrial purpose and sports detection. We have developed a real-time hand gesture recognition system using inertial sensors for the smart home application. Developing such a model facilitates the medical health field (elders or disabled ones). Home automation has also been proven to be a tremendous benefit for the elderly and disabled. Residents are admitted to smart homes for comfort, luxury, improved quality of life, and protection against intrusion and burglars. This paper proposes a novel system that uses principal component analysis, linear More >

  • Open Access

    ARTICLE

    Wrapper Based Linear Discriminant Analysis (LDA) for Intrusion Detection in IIoT

    B. Yasotha1,*, T. Sasikala2, M. Krishnamurthy3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1625-1640, 2023, DOI:10.32604/csse.2023.025669 - 03 November 2022

    Abstract The internet has become a part of every human life. Also, various devices that are connected through the internet are increasing. Nowadays, the Industrial Internet of things (IIoT) is an evolutionary technology interconnecting various industries in digital platforms to facilitate their development. Moreover, IIoT is being used in various industrial fields such as logistics, manufacturing, metals and mining, gas and oil, transportation, aviation, and energy utilities. It is mandatory that various industrial fields require highly reliable security and preventive measures against cyber-attacks. Intrusion detection is defined as the detection in the network of security threats… More >

  • Open Access

    ARTICLE

    Differentiation of Wheat Diseases and Pests Based on Hyperspectral Imaging Technology with a Few Specific Bands

    Lin Yuan1, Jingcheng Zhang2,*, Quan Deng2, Yingying Dong3, Haolin Wang2, Xiankun Du2

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 611-628, 2023, DOI:10.32604/phyton.2022.023662 - 12 October 2022

    Abstract Hyperspectral imaging technique is known as a promising non-destructive way for detecting plants diseases and pests. In most previous studies, the utilization of the whole spectrum or a large number of bands as well as the complexity of model structure severely hampers the application of the technique in practice. If a detection system can be established with a few bands and a relatively simple logic, it would be of great significance for application. This study established a method for identifying and discriminating three commonly occurring diseases and pests of wheat, i.e., powdery mildew, yellow rust… More >

  • Open Access

    ARTICLE

    Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm

    R. Anandha Murugan1,*, B. Sathyabama2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 353-368, 2023, DOI:10.32604/iasc.2023.032355 - 29 September 2022

    Abstract Improved picture quality is critical to the effectiveness of object recognition and tracking. The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions, such as mist, fog, dust etc. The pictures then shift in intensity, colour, polarity and consistency. A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient environments. In recent years, target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of… More >

  • Open Access

    ARTICLE

    Real and Altered Fingerprint Classification Based on Various Features and Classifiers

    Saif Saad Hameed, Ismail Taha Ahmed*, Omar Munthir Al Okashi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 327-340, 2023, DOI:10.32604/cmc.2023.031622 - 22 September 2022

    Abstract Biometric recognition refers to the identification of individuals through their unique behavioral features (e.g., fingerprint, face, and iris). We need distinguishing characteristics to identify people, such as fingerprints, which are world-renowned as the most reliable method to identify people. The recognition of fingerprints has become a standard procedure in forensics, and different techniques are available for this purpose. Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models. Therefore, we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and… More >

  • Open Access

    ARTICLE

    A Novel Approach to Design Distribution Preserving Framework for Big Data

    Mini Prince1,*, P. M. Joe Prathap2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2789-2803, 2023, DOI:10.32604/iasc.2023.029533 - 17 August 2022

    Abstract

    In several fields like financial dealing, industry, business, medicine, et cetera, Big Data (BD) has been utilized extensively, which is nothing but a collection of a huge amount of data. However, it is highly complicated along with time-consuming to process a massive amount of data. Thus, to design the Distribution Preserving Framework for BD, a novel methodology has been proposed utilizing Manhattan Distance (MD)-centered Partition Around Medoid (MD–PAM) along with Conjugate Gradient Artificial Neural Network (CG-ANN), which undergoes various steps to reduce the complications of BD. Firstly, the data are processed in the pre-processing phase by

    More >

  • Open Access

    ARTICLE

    A Novel Approach for Network Vulnerability Analysis in IIoT

    K. Sudhakar*, S. Senthilkumar

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 263-277, 2023, DOI:10.32604/csse.2023.029680 - 16 August 2022

    Abstract Industrial Internet of Things (IIoT) offers efficient communication among business partners and customers. With an enlargement of IoT tools connected through the internet, the ability of web traffic gets increased. Due to the raise in the size of network traffic, discovery of attacks in IIoT and malicious traffic in the early stages is a very demanding issues. A novel technique called Maximum Posterior Dichotomous Quadratic Discriminant Jaccardized Rocchio Emphasis Boost Classification (MPDQDJREBC) is introduced for accurate attack detection with minimum time consumption in IIoT. The proposed MPDQDJREBC technique includes feature selection and categorization. First, the… More >

  • Open Access

    ARTICLE

    A Quasi-Newton Neural Network Based Efficient Intrusion Detection System for Wireless Sensor Network

    A. Gautami1,*, J. Shanthini2, S. Karthik3

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 427-443, 2023, DOI:10.32604/csse.2023.026688 - 16 August 2022

    Abstract In Wireless Sensor Networks (WSN), attacks mostly aim in limiting or eliminating the capability of the network to do its normal function. Detecting this misbehaviour is a demanding issue. And so far the prevailing research methods show poor performance. AQN3 centred efficient Intrusion Detection Systems (IDS) is proposed in WSN to ameliorate the performance. The proposed system encompasses Data Gathering (DG) in WSN as well as Intrusion Detection (ID) phases. In DG, the Sensor Nodes (SN) is formed as clusters in the WSN and the Distance-based Fruit Fly Fuzzy c-means (DFFF) algorithm chooses the Cluster… More >

Displaying 1-10 on page 1 of 28. Per Page