Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Amel Ali Alhussan1,*, Marwa M. Eid3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2117-2132, 2023, DOI:10.32604/iasc.2023.038811 - 21 June 2023

    Abstract The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments. Meanwhile, the accurate prediction can be realized using the recent advances in machine learning and predictive models. This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory (LSTM) units. The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy. This optimization algorithm is based on the recently emerged… More >

  • Open Access

    ARTICLE

    Adaptive Dynamic Dipper Throated Optimization for Feature Selection in Medical Data

    Ghada Atteia1, El-Sayed M. El-kenawy2,3, Nagwan Abdel Samee1,*, Mona M. Jamjoom4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, Ahmad Taher Azar8,9, Nima Khodadadi10,11, Reham A. Ghanem12, Mahmoud Y. Shams13

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1883-1900, 2023, DOI:10.32604/cmc.2023.031723 - 06 February 2023

    Abstract The rapid population growth results in a crucial problem in the early detection of diseases in medical research. Among all the cancers unveiled, breast cancer is considered the second most severe cancer. Consequently, an exponential rising in death cases incurred by breast cancer is expected due to the rapid population growth and the lack of resources required for performing medical diagnoses. Utilizing recent advances in machine learning could help medical staff in diagnosing diseases as they offer effective, reliable, and rapid responses, which could help in decreasing the death risk. In this paper, we propose… More >

  • Open Access

    ARTICLE

    Voting Classifier and Metaheuristic Optimization for Network Intrusion Detection

    Doaa Sami Khafaga1, Faten Khalid Karim1,*, Abdelaziz A. Abdelhamid2,3, El-Sayed M. El-kenawy4, Hend K. Alkahtani1, Nima Khodadadi5, Mohammed Hadwan6, Abdelhameed Ibrahim7

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3183-3198, 2023, DOI:10.32604/cmc.2023.033513 - 31 October 2022

    Abstract Managing physical objects in the network’s periphery is made possible by the Internet of Things (IoT), revolutionizing human life. Open attacks and unauthorized access are possible with these IoT devices, which exchange data to enable remote access. These attacks are often detected using intrusion detection methodologies, although these systems’ effectiveness and accuracy are subpar. This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization. The employed metaheuristic optimizer is a new version of the whale optimization algorithm (WOA), which is guided by the dipper… More >

  • Open Access

    ARTICLE

    Network Intrusion Detection Based on Feature Selection and Hybrid Metaheuristic Optimization

    Reem Alkanhel1, El-Sayed M. El-kenawy2, Abdelaziz A. Abdelhamid3,4, Abdelhameed Ibrahim5, Manal Abdullah Alohali6, Mostafa Abotaleb7, Doaa Sami Khafaga8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2677-2693, 2023, DOI:10.32604/cmc.2023.033273 - 31 October 2022

    Abstract Applications of internet-of-things (IoT) are increasingly being used in many facets of our daily life, which results in an enormous volume of data. Cloud computing and fog computing, two of the most common technologies used in IoT applications, have led to major security concerns. Cyberattacks are on the rise as a result of the usage of these technologies since present security measures are insufficient. Several artificial intelligence (AI) based security solutions, such as intrusion detection systems (IDS), have been proposed in recent years. Intelligent technologies that require data preprocessing and machine learning algorithm-performance augmentation require… More >

  • Open Access

    ARTICLE

    Hybrid Grey Wolf and Dipper Throated Optimization in Network Intrusion Detection Systems

    Reem Alkanhel1,*, Doaa Sami Khafaga2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Rashid Amin7, Mostafa Abotaleb8, B. M. El-den6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2695-2709, 2023, DOI:10.32604/cmc.2023.033153 - 31 October 2022

    Abstract The Internet of Things (IoT) is a modern approach that enables connection with a wide variety of devices remotely. Due to the resource constraints and open nature of IoT nodes, the routing protocol for low power and lossy (RPL) networks may be vulnerable to several routing attacks. That’s why a network intrusion detection system (NIDS) is needed to guard against routing assaults on RPL-based IoT networks. The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks. Therefore, we propose in this paper… More >

  • Open Access

    ARTICLE

    Hybrid Dipper Throated and Grey Wolf Optimization for Feature Selection Applied to Life Benchmark Datasets

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,3, Faten Khalid Karim1,*, Mostafa Abotaleb4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, D. L. Elsheweikh8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4531-4545, 2023, DOI:10.32604/cmc.2023.033042 - 31 October 2022

    Abstract Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning. Each feature in a dataset has 2n possible subsets, making it challenging to select the optimum collection of features using typical methods. As a result, a new metaheuristics-based feature selection method based on the dipper-throated and grey-wolf optimization (DTO-GW) algorithms has been developed in this research. Instability can result when the selection of features is subject to metaheuristics, which can lead to a wide range of results. Thus, we adopted hybrid optimization in our method of… More >

  • Open Access

    ARTICLE

    Optimization of Electrocardiogram Classification Using Dipper Throated Algorithm and Differential Evolution

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,3, Faten Khalid Karim1,*, Sameer Alshetewi4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, D. L. Elsheweikh8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2379-2395, 2023, DOI:10.32604/cmc.2023.032886 - 31 October 2022

    Abstract Electrocardiogram (ECG) signal is a measure of the heart’s electrical activity. Recently, ECG detection and classification have benefited from the use of computer-aided systems by cardiologists. The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization (DTO) and Differential Evolution Algorithm (DEA) into a unified algorithm to optimize the hyperparameters of neural network (NN) for boosting the ECG classification accuracy. In addition, we proposed a new feature selection method for selecting the significant feature that can improve the overall performance. To prove the superiority of the More >

  • Open Access

    ARTICLE

    Dipper Throated Optimization for Detecting Black-Hole Attacks in MANETs

    Reem Alkanhel1, El-Sayed M. El-kenawy2,3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Mostafa Abotaleb7, Doaa Sami Khafaga8,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1905-1921, 2023, DOI:10.32604/cmc.2023.032157 - 22 September 2022

    Abstract In terms of security and privacy, mobile ad-hoc network (MANET) continues to be in demand for additional debate and development. As more MANET applications become data-oriented, implementing a secure and reliable data transfer protocol becomes a major concern in the architecture. However, MANET’s lack of infrastructure, unpredictable topology, and restricted resources, as well as the lack of a previously permitted trust relationship among connected nodes, contribute to the attack detection burden. A novel detection approach is presented in this paper to classify passive and active black-hole attacks. The proposed approach is based on the dipper… More >

  • Open Access

    ARTICLE

    Optimized Weighted Ensemble Using Dipper Throated Optimization Algorithm in Metamaterial Antenna

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,3, Faten Khalid Karim1,*, Sameer Alshetewi4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5771-5788, 2022, DOI:10.32604/cmc.2022.032229 - 28 July 2022

    Abstract Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning approaches are currently a big part of current research, and they’re likely to be huge in the future. The model utilized determines the accuracy of the prediction in large part. The goal of this paper is to develop an optimized ensemble model for forecasting the metamaterial antenna’s bandwidth and gain. The… More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images

    Nagwan Abdel Samee1, El-Sayed M. El-Kenawy2,3, Ghada Atteia1,*, Mona M. Jamjoom4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, Noha E. El-Attar8, Tarek Gaber9,10, Adam Slowik11, Mahmoud Y. Shams12

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4193-4210, 2022, DOI:10.32604/cmc.2022.031147 - 16 June 2022

    Abstract As corona virus disease (COVID-19) is still an ongoing global outbreak, countries around the world continue to take precautions and measures to control the spread of the pandemic. Because of the excessive number of infected patients and the resulting deficiency of testing kits in hospitals, a rapid, reliable, and automatic detection of COVID-19 is in extreme need to curb the number of infections. By analyzing the COVID-19 chest X-ray images, a novel metaheuristic approach is proposed based on hybrid dipper throated and particle swarm optimizers. The lung region was segmented from the original chest X-ray… More >

Displaying 1-10 on page 1 of 13. Per Page