Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    A Low Complexity ML-Based Methods for Malware Classification

    Mahmoud E. Farfoura1,*, Ahmad Alkhatib1, Deema Mohammed Alsekait2,*, Mohammad Alshinwan3,7, Sahar A. El-Rahman4, Didi Rosiyadi5, Diaa Salama AbdElminaam6,7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4833-4857, 2024, DOI:10.32604/cmc.2024.054849 - 12 September 2024

    Abstract The article describes a new method for malware classification, based on a Machine Learning (ML) model architecture specifically designed for malware detection, enabling real-time and accurate malware identification. Using an innovative feature dimensionality reduction technique called the Interpolation-based Feature Dimensionality Reduction Technique (IFDRT), the authors have significantly reduced the feature space while retaining critical information necessary for malware classification. This technique optimizes the model’s performance and reduces computational requirements. The proposed method is demonstrated by applying it to the BODMAS malware dataset, which contains 57,293 malware samples and 77,142 benign samples, each with a 2381-feature… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Machine Learning Algorithms in Reduced Dimensional Spaces

    Kaveh Heidary1,*, Venkata Atluri1, John Bland2

    Journal of Cyber Security, Vol.6, pp. 69-87, 2024, DOI:10.32604/jcs.2024.051196 - 28 August 2024

    Abstract This paper investigates the impact of reducing feature-vector dimensionality on the performance of machine learning (ML) models. Dimensionality reduction and feature selection techniques can improve computational efficiency, accuracy, robustness, transparency, and interpretability of ML models. In high-dimensional data, where features outnumber training instances, redundant or irrelevant features introduce noise, hindering model generalization and accuracy. This study explores the effects of dimensionality reduction methods on binary classifier performance using network traffic data for cybersecurity applications. The paper examines how dimensionality reduction techniques influence classifier operation and performance across diverse performance metrics for seven ML models. Four… More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621 - 26 March 2024

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    A Novel Human Interaction Framework Using Quadratic Discriminant Analysis with HMM

    Tanvir Fatima Naik Bukht1, Naif Al Mudawi2, Saud S. Alotaibi3, Abdulwahab Alazeb2, Mohammed Alonazi4, Aisha Ahmed AlArfaj5, Ahmad Jalal1, Jaekwang Kim6,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1557-1573, 2023, DOI:10.32604/cmc.2023.041335 - 29 November 2023

    Abstract Human-human interaction recognition is crucial in computer vision fields like surveillance, human-computer interaction, and social robotics. It enhances systems’ ability to interpret and respond to human behavior precisely. This research focuses on recognizing human interaction behaviors using a static image, which is challenging due to the complexity of diverse actions. The overall purpose of this study is to develop a robust and accurate system for human interaction recognition. This research presents a novel image-based human interaction recognition method using a Hidden Markov Model (HMM). The technique employs hue, saturation, and intensity (HSI) color transformation to… More >

  • Open Access

    ARTICLE

    Dimensionality Reduction Using Optimized Self-Organized Map Technique for Hyperspectral Image Classification

    S. Srinivasan, K. Rajakumar*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2481-2496, 2023, DOI:10.32604/csse.2023.040817 - 28 July 2023

    Abstract

    The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors. The high correlation between these features and the noises greatly affects the classification performances. To overcome this, dimensionality reduction techniques are widely used. Traditional image processing applications recently propose numerous deep learning models. However, in hyperspectral image classification, the features of deep learning models are less explored. Thus, for efficient hyperspectral image classification, a depth-wise convolutional neural network is presented in this research work. To handle the dimensionality issue in the classification process, an optimized self-organized map model is employed

    More >

  • Open Access

    ARTICLE

    Customer Churn Prediction Framework of Inclusive Finance Based on Blockchain Smart Contract

    Fang Yu1, Wenbin Bi2, Ning Cao3,4,*, Hongjun Li1, Russell Higgs5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1-17, 2023, DOI:10.32604/csse.2023.018349 - 26 May 2023

    Abstract In view of the fact that the prediction effect of influential financial customer churn in the Internet of Things environment is difficult to achieve the expectation, at the smart contract level of the blockchain, a customer churn prediction framework based on situational awareness and integrating customer attributes, the impact of project hotspots on customer interests, and customer satisfaction with the project has been built. This framework introduces the background factors in the financial customer environment, and further discusses the relationship between customers, the background of customers and the characteristics of pre-lost customers. The improved Singular… More >

  • Open Access

    ARTICLE

    Hyperspectral Images-Based Crop Classification Scheme for Agricultural Remote Sensing

    Imran Ali1, Zohaib Mushtaq2, Saad Arif3, Abeer D. Algarni4,*, Naglaa F. Soliman4, Walid El-Shafai5,6

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 303-319, 2023, DOI:10.32604/csse.2023.034374 - 20 January 2023

    Abstract Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications. Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension. The classification accuracy of hyperspectral images (HSI) increases significantly by employing both spatial and spectral features. For this work, the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared (VNIR) range of 400 to 1000 nm wavelength within 180 spectral bands. The dataset is collected for nine different crops on… More >

  • Open Access

    ARTICLE

    EliteVec: Feature Fusion for Depression Diagnosis Using Optimized Long Short-Term Memory Network

    S. Kavi Priya*, K. Pon Karthika

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1745-1766, 2023, DOI:10.32604/iasc.2023.032160 - 05 January 2023

    Abstract Globally, depression is perceived as the most recurrent and risky disorder among young people and adults under the age of 60. Depression has a strong influence on the usage of words which can be observed in the form of written texts or stories posted on social media. With the help of Natural Language Processing(NLP) and Machine Learning (ML) techniques, the depressive signs expressed by people can be identified at the earliest stage from their Social Media posts. The proposed work aims to introduce an efficacious depression detection model unifying an exemplary feature extraction scheme and… More >

  • Open Access

    ARTICLE

    A Highly Accurate Dysphonia Detection System Using Linear Discriminant Analysis

    Anas Basalamah1, Mahedi Hasan2, Shovan Bhowmik2, Shaikh Akib Shahriyar2,*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1921-1938, 2023, DOI:10.32604/csse.2023.027399 - 01 August 2022

    Abstract The recognition of pathological voice is considered a difficult task for speech analysis. Moreover, otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are caused by voice alteration of vocal folds and their accuracy is between 60%–70%. To enhance detection accuracy and reduce processing speed of dysphonia detection, a novel approach is proposed in this paper. We have leveraged Linear Discriminant Analysis (LDA) to train multiple Machine Learning (ML) models for dysphonia detection. Several ML models are utilized like Support Vector Machine (SVM), Logistic Regression, and… More >

  • Open Access

    ARTICLE

    An Advanced Dynamic Scheduling for Achieving Optimal Resource Allocation

    R. Prabhu1,*, S. Rajesh2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 281-295, 2023, DOI:10.32604/csse.2023.024339 - 01 June 2022

    Abstract Cloud computing distributes task-parallel among the various resources. Applications with self-service supported and on-demand service have rapid growth. For these applications, cloud computing allocates the resources dynamically via the internet according to user requirements. Proper resource allocation is vital for fulfilling user requirements. In contrast, improper resource allocations result to load imbalance, which leads to severe service issues. The cloud resources implement internet-connected devices using the protocols for storing, communicating, and computations. The extensive needs and lack of optimal resource allocating scheme make cloud computing more complex. This paper proposes an NMDS (Network Manager based… More >

Displaying 1-10 on page 1 of 31. Per Page