Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Modification of Wood by Tannin-Furfuryl Alcohol Resins–Effect on Dimensional Stability, Mechanical Properties and Decay Durability

    Mahdi Mubarok1,2, Christine Gérardin-Charbonnier1,*, Elham Azadeh1, Firmin Obounou Akong1, Stéphane Dumarçay1, Antonio Pizzi1, Philippe Gérardin1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 505-521, 2023, DOI:10.32604/jrm.2022.024872 - 22 September 2022

    Abstract Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-furanic solution at a certain concentration into the wood followed with curing at 103°C for a specific duration was performed for the wood modification. Different properties of the modified woods like dimensional stability, resistance of treatment to leaching, More >

  • Open Access

    ARTICLE

    Comparative Study on the Properties of Inorganic Silicate and Organic Phenolic Prepolymer Modified Poplar Wood by Vacuum Cycle Pressurization

    Pengfei Guan1, Ping Li2, Yiqiang Wu1, Xingong Li1, Guangming Yuan1, Yingfeng Zuo1,*

    Journal of Renewable Materials, Vol.10, No.9, pp. 2451-2463, 2022, DOI:10.32604/jrm.2022.020459 - 30 May 2022

    Abstract To enhance mechanical properties and improve flame retardancy and smoke suppression of fast-growing poplar wood in wood applications, the wood was impregnated and modified. An organic phenolic prepolymer and inorganic sodium silicate was used as contrasting impregnation modifiers and wood samples were impregnated by a bionic “respiration” method with alternating positive and negative pressure. The weight percentage gain, density increase ratio, mechanical properties (bending and compressive strength and hardness), and water absorption rate of inorganic and organic-impregnated modified poplar wood (IIMPW and OIMPW, respectively) were compared and these properties in IIMPW were found to be… More >

  • Open Access

    ARTICLE

    Improving the Properties of Fast-Growing Chinese Fir by Vacuum Hot Pressing Treatment

    Lu Hong1, Biqing Shu1,2, Qian He1, Zehui Ju1, Haiyang Zhang1, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 49-59, 2021, DOI:10.32604/jrm.2021.013833 - 30 November 2020

    Abstract Chinese fir was compressed by vacuum hot pressing and conventional hot pressing at different temperatures (180°C, 200°C and 220°C), respectively. The color parameters of the heat-compressed sample were measured, the relative mechanical properties of the material were tested and changes in the chemistry of fir were investigated using Fourier transform infrared spectroscopy (FTIR) and Xray photoelectron spectroscopy (XPS). The results indicated that the color difference between compressed and untreated wood increased gradually with the increase of temperature. Compared with the conventional hot pressing treatment, the color difference (ΔE*) of the Chinese fir treated by vacuum More >

Displaying 1-10 on page 1 of 3. Per Page