Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability

    Mohamed Abdel-Basset1, Hossam Hawash1, Mohamed Abouhawwash2,3,*, S. S. Askar4, Alshaimaa A. Tantawy1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1171-1187, 2024, DOI:10.32604/cmc.2023.044425 - 30 January 2024

    Abstract The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans. This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis. This paper proposes a novel deep learning approach, called Conformer Network, for explainable discrimination of viral pneumonia depending on the lung Region of Infections (ROI) within a single modality radiographic CT scan. Firstly, an efficient U-shaped transformer network is integrated for lung image segmentation. Then, a robust transfer learning technique is introduced… More >

Displaying 1-10 on page 1 of 1. Per Page