Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm

    Mohammad Ababneh*, Ayat Al-Droos, Ammar El-Hassan

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1171-1191, 2024, DOI:10.32604/csse.2024.052875 - 13 September 2024

    Abstract With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’ malware, especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly. In this article, we present a framework for mobile malware detection based on a… More >

  • Open Access

    ARTICLE

    A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

    Kun Fang, Julong Pan*, Lingyi Li, Ruihan Xiang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 493-514, 2024, DOI:10.32604/cmc.2023.045008 - 30 January 2024

    Abstract With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance… More >

  • Open Access

    ARTICLE

    A New Vehicle Detection Framework Based on Feature-Guided in the Road Scene

    Tianmin Deng*, Xiyue Zhang, Xinxin Cheng

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 533-549, 2024, DOI:10.32604/cmc.2023.044639 - 30 January 2024

    Abstract Vehicle detection plays a crucial role in the field of autonomous driving technology. However, directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar performance and slow inference speeds in vehicle detection. Achieving a balance between accuracy and detection speed is crucial for real-time object detection in real-world road scenes. This paper proposes a high-precision and fast vehicle detector called the feature-guided bidirectional pyramid network (FBPN). Firstly, to tackle challenges like vehicle occlusion and significant background interference, the efficient feature filtering module (EFFM) is introduced into the deep network,… More >

  • Open Access

    ARTICLE

    AID4I: An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning

    Anıl Sezgin1,2,*, Aytuğ Boyacı3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2121-2143, 2023, DOI:10.32604/cmc.2023.040287 - 30 August 2023

    Abstract By identifying and responding to any malicious behavior that could endanger the system, the Intrusion Detection System (IDS) is crucial for preserving the security of the Industrial Internet of Things (IIoT) network. The benefit of anomaly-based IDS is that they are able to recognize zero-day attacks due to the fact that they do not rely on a signature database to identify abnormal activity. In order to improve control over datasets and the process, this study proposes using an automated machine learning (AutoML) technique to automate the machine learning processes for IDS. Our ground-breaking architecture, known… More >

  • Open Access

    ARTICLE

    Automatic Examination of Condition of Used Books with YOLO-Based Object Detection Framework

    Sumin Hong1, Jin-Woo Jeong2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1611-1632, 2023, DOI:10.32604/csse.2023.038319 - 28 July 2023

    Abstract As the demand for used books has grown in recent years, various online/offline market platforms have emerged to support the trade in used books. The price of used books can depend on various factors, such as the state of preservation (i.e., condition), the value of possession, and so on. Therefore, some online platforms provide a reference document to evaluate the condition of used books, but it is still not trivial for individual sellers to determine the price. The lack of a standard quantitative method to assess the condition of the used book would confuse both… More >

  • Open Access

    ARTICLE

    Edge of Things Inspired Robust Intrusion Detection Framework for Scalable and Decentralized Applications

    Abdulaziz Aldribi1,2,*, Aman Singh2,3, Jose Breñosa3,4

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3865-3881, 2023, DOI:10.32604/csse.2023.037748 - 03 April 2023

    Abstract Ubiquitous data monitoring and processing with minimal latency is one of the crucial challenges in real-time and scalable applications. Internet of Things (IoT), fog computing, edge computing, cloud computing, and the edge of things are the spine of all real-time and scalable applications. Conspicuously, this study proposed a novel framework for a real-time and scalable application that changes dynamically with time. In this study, IoT deployment is recommended for data acquisition. The Pre-Processing of data with local edge and fog nodes is implemented in this study. The threshold-oriented data classification method is deployed to improve… More >

  • Open Access

    ARTICLE

    An Effective Threat Detection Framework for Advanced Persistent Cyberattacks

    So-Eun Jeon1, Sun-Jin Lee1, Eun-Young Lee1, Yeon-Ji Lee2, Jung-Hwa Ryu2, Jung-Hyun Moon2, Sun-Min Yi2, Il-Gu Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4231-4253, 2023, DOI:10.32604/cmc.2023.034287 - 31 March 2023

    Abstract Recently, with the normalization of non-face-to-face online environments in response to the COVID-19 pandemic, the possibility of cyberattacks through endpoints has increased. Numerous endpoint devices are managed meticulously to prevent cyberattacks and ensure timely responses to potential security threats. In particular, because telecommuting, telemedicine, and tele-education are implemented in uncontrolled environments, attackers typically target vulnerable endpoints to acquire administrator rights or steal authentication information, and reports of endpoint attacks have been increasing considerably. Advanced persistent threats (APTs) using various novel variant malicious codes are a form of a sophisticated attack. However, conventional commercial antivirus and… More >

  • Open Access

    ARTICLE

    An Efficient Intrusion Detection Framework for Industrial Internet of Things Security

    Samah Alshathri1, Ayman El-Sayed2, Walid El-Shafai3,4,*, Ezz El-Din Hemdan2

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 819-834, 2023, DOI:10.32604/csse.2023.034095 - 20 January 2023

    Abstract Recently, the Internet of Things (IoT) has been used in various applications such as manufacturing, transportation, agriculture, and healthcare that can enhance efficiency and productivity via an intelligent management console remotely. With the increased use of Industrial IoT (IIoT) applications, the risk of brutal cyber-attacks also increased. This leads researchers worldwide to work on developing effective Intrusion Detection Systems (IDS) for IoT infrastructure against any malicious activities. Therefore, this paper provides effective IDS to detect and classify unpredicted and unpredictable severe attacks in contradiction to the IoT infrastructure. A comprehensive evaluation examined on a new… More >

  • Open Access

    ARTICLE

    Cyberattack Detection Framework Using Machine Learning and User Behavior Analytics

    Abdullah Alshehri1,*, Nayeem Khan1, Ali Alowayr1, Mohammed Yahya Alghamdi2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1679-1689, 2023, DOI:10.32604/csse.2023.026526 - 15 June 2022

    Abstract This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics. The framework models the user behavior as sequences of events representing the user activities at such a network. The represented sequences are then fitted into a recurrent neural network model to extract features that draw distinctive behavior for individual users. Thus, the model can recognize frequencies of regular behavior to profile the user manner in the network. The subsequent procedure is that the recurrent neural network would detect abnormal behavior by classifying unknown behavior to either regular or… More >

  • Open Access

    ARTICLE

    DISTINÏCT: Data poISoning atTacks dectectIon usiNg optÏmized jaCcard disTance

    Maria Sameen1, Seong Oun Hwang2,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4559-4576, 2022, DOI:10.32604/cmc.2022.031091 - 28 July 2022

    Abstract Machine Learning (ML) systems often involve a re-training process to make better predictions and classifications. This re-training process creates a loophole and poses a security threat for ML systems. Adversaries leverage this loophole and design data poisoning attacks against ML systems. Data poisoning attacks are a type of attack in which an adversary manipulates the training dataset to degrade the ML system’s performance. Data poisoning attacks are challenging to detect, and even more difficult to respond to, particularly in the Internet of Things (IoT) environment. To address this problem, we proposed DISTINÏCT, the first proactive More >

Displaying 1-10 on page 1 of 19. Per Page