Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,291)
  • Open Access

    ARTICLE

    Enhanced Nature Inspired-Support Vector Machine for Glaucoma Detection

    Jahanzaib Latif1, Shanshan Tu1,*, Chuangbai Xiao1, Anas Bilal2, Sadaqat Ur Rehman3, Zohaib Ahmad4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1151-1172, 2023, DOI:10.32604/cmc.2023.040152

    Abstract Glaucoma is a progressive eye disease that can lead to blindness if left untreated. Early detection is crucial to prevent vision loss, but current manual scanning methods are expensive, time-consuming, and require specialized expertise. This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine (EGWO-SVM) method. The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter (AMF) and feature extraction using the previously processed speeded-up robust feature (SURF), histogram of oriented gradients (HOG), and Global features. The enhanced Grey Wolf Optimization (GWO) technique is then employed… More >

  • Open Access

    ARTICLE

    Ship Detection and Recognition Based on Improved YOLOv7

    Wei Wu1, Xiulai Li2, Zhuhua Hu1, Xiaozhang Liu3,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 489-498, 2023, DOI:10.32604/cmc.2023.039929

    Abstract In this paper, an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks, such as the irregular shapes and varying sizes of ships. The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset. This paper also introduces a novel multi-scale feature fusion module, which comprises Path Aggregation Network (PAN) modules, enabling the efficient capture of ship features across different scales. Furthermore, data preprocessing is enhanced through the application of data… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Based Detection and Classification of Citrus Plant Diseases

    Shah Faisal1, Kashif Javed1, Sara Ali1, Areej Alasiry2, Mehrez Marzougui2, Muhammad Attique Khan3,*, Jae-Hyuk Cha4,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 895-914, 2023, DOI:10.32604/cmc.2023.039781

    Abstract Citrus fruit crops are among the world’s most important agricultural products, but pests and diseases impact their cultivation, resulting in yield and quality losses. Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade, allowing for early disease detection and improving agricultural production. This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning (DL) model, which improved accuracy while decreasing computational complexity. The most recent transfer learning-based models were applied to the Citrus Plant Dataset to improve classification accuracy. Using… More >

  • Open Access

    ARTICLE

    Anomalous Situations Recognition in Surveillance Images Using Deep Learning

    Qurat-ul-Ain Arshad1, Mudassar Raza1, Wazir Zada Khan2, Ayesha Siddiqa2, Abdul Muiz2, Muhammad Attique Khan3,*, Usman Tariq4, Taerang Kim5, Jae-Hyuk Cha5,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1103-1125, 2023, DOI:10.32604/cmc.2023.039752

    Abstract Anomalous situations in surveillance videos or images that may result in security issues, such as disasters, accidents, crime, violence, or terrorism, can be identified through video anomaly detection. However, differentiating anomalous situations from normal can be challenging due to variations in human activity in complex environments such as train stations, busy sporting fields, airports, shopping areas, military bases, care centers, etc. Deep learning models’ learning capability is leveraged to identify abnormal situations with improved accuracy. This work proposes a deep learning architecture called Anomalous Situation Recognition Network (ASRNet) for deep feature extraction to improve the detection accuracy of various anomalous… More >

  • Open Access

    ARTICLE

    MEM-TET: Improved Triplet Network for Intrusion Detection System

    Weifei Wang1, Jinguo Li1,*, Na Zhao2, Min Liu1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 471-487, 2023, DOI:10.32604/cmc.2023.039733

    Abstract With the advancement of network communication technology, network traffic shows explosive growth. Consequently, network attacks occur frequently. Network intrusion detection systems are still the primary means of detecting attacks. However, two challenges continue to stymie the development of a viable network intrusion detection system: imbalanced training data and new undiscovered attacks. Therefore, this study proposes a unique deep learning-based intrusion detection method. We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data. Then the original data is fed into the triplet network… More >

  • Open Access

    ARTICLE

    XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly

    Yuna Han1, Hangbae Chang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 221-237, 2023, DOI:10.32604/cmc.2023.039463

    Abstract Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission. Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry. However, real-time training and classifying network traffic pose challenges, as they can lead to the degradation of the overall dataset and difficulties preventing attacks. Additionally, existing semi-supervised learning research might need to analyze the experimental results comprehensively. This paper proposes XA-GANomaly, a novel technique for explainable adaptive semi-supervised learning using GANomaly, an image anomalous detection model that dynamically trains… More >

  • Open Access

    ARTICLE

    Lightweight Surface Litter Detection Algorithm Based on Improved YOLOv5s

    Zunliang Chen1,2, Chengxu Huang1,2, Lucheng Duan1,2, Baohua Tan1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1085-1102, 2023, DOI:10.32604/cmc.2023.039451

    Abstract In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower, a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed to provide core technical support for real-time water surface litter detection by water surface litter cleanup vessels. The method reduces network parameters by introducing the deep separable convolution GhostConv in the lightweight network GhostNet to substitute the ordinary convolution in the original YOLOv5s feature extraction and fusion network; introducing the C3Ghost module to substitute the C3 module in the original backbone and neck networks to further reduce… More >

  • Open Access

    ARTICLE

    An Improved Fully Automated Breast Cancer Detection and Classification System

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 731-751, 2023, DOI:10.32604/cmc.2023.039433

    Abstract More than 500,000 patients are diagnosed with breast cancer annually. Authorities worldwide reported a death rate of 11.6% in 2018. Breast tumors are considered a fatal disease and primarily affect middle-aged women. Various approaches to identify and classify the disease using different technologies, such as deep learning and image segmentation, have been developed. Some of these methods reach 99% accuracy. However, boosting accuracy remains highly important as patients’ lives depend on early diagnosis and specified treatment plans. This paper presents a fully computerized method to detect and categorize tumor masses in the breast using two deep-learning models and a classifier… More >

  • Open Access

    ARTICLE

    Comparative Analysis of COVID-19 Detection Methods Based on Neural Network

    Inès Hilali-Jaghdam1,*, Azhari A Elhag2, Anis Ben Ishak3, Bushra M. Elamin Elnaim4, Omer Eltag Mohammed Elhag5, Feda Muhammed Abuhaimed1, S. Abdel-Khalek2,6

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1127-1150, 2023, DOI:10.32604/cmc.2023.038915

    Abstract In 2019, the novel coronavirus disease 2019 (COVID-19) ravaged the world. As of July 2021, there are about 192 million infected people worldwide and 4.1365 million deaths. At present, the new coronavirus is still spreading and circulating in many places around the world, especially since the emergence of Delta variant strains has increased the risk of the COVID-19 pandemic again. The symptoms of COVID-19 are diverse, and most patients have mild symptoms, with fever, dry cough, and fatigue as the main manifestations, and about 15.7% to 32.0% of patients will develop severe symptoms. Patients are screened in hospitals or primary… More >

  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection Approach Based on Adversarial Memory Autoencoders for Multivariate Time Series

    Tianzi Zhao1,2,3,4, Liang Jin1,2,3,*, Xiaofeng Zhou1,2,3, Shuai Li1,2,3, Shurui Liu1,2,3,4, Jiang Zhu1,2,3

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 329-346, 2023, DOI:10.32604/cmc.2023.038595

    Abstract The widespread usage of Cyber Physical Systems (CPSs) generates a vast volume of time series data, and precisely determining anomalies in the data is critical for practical production. Autoencoder is the mainstream method for time series anomaly detection, and the anomaly is judged by reconstruction error. However, due to the strong generalization ability of neural networks, some abnormal samples close to normal samples may be judged as normal, which fails to detect the abnormality. In addition, the dataset rarely provides sufficient anomaly labels. This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series… More >

Displaying 1-10 on page 1 of 1291. Per Page  

Share Link