Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,889)
  • Open Access

    ARTICLE

    SAR-LtYOLOv8: A Lightweight YOLOv8 Model for Small Object Detection in SAR Ship Images

    Conghao Niu1,*, Dezhi Han1, Bing Han2, Zhongdai Wu2

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1723-1748, 2024, DOI:10.32604/csse.2024.056736 - 22 November 2024

    Abstract The high coverage and all-weather capabilities of Synthetic Aperture Radar (SAR) image ship detection make it a widely accepted method for maritime ship positioning and identification. However, SAR ship detection faces challenges such as indistinct ship contours, low resolution, multi-scale features, noise, and complex background interference. This paper proposes a lightweight YOLOv8 model for small object detection in SAR ship images, incorporating key structures to enhance performance. The YOLOv8 backbone is replaced by the Slim Backbone (SB), and the Delete Medium-sized Detection Head (DMDH) structure is eliminated to concentrate on shallow features. Dynamically adjusting the… More >

  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

    Mohammad Al-Omari1, Qasem Abu Al-Haija2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1537-1555, 2024, DOI:10.32604/csse.2024.056257 - 22 November 2024

    Abstract More businesses are deploying powerful Intrusion Detection Systems (IDS) to secure their data and physical assets. Improved cyber-attack detection and prevention in these systems requires machine learning (ML) approaches. This paper examines a cyber-attack prediction system combining feature selection (FS) and ML. Our technique’s foundation was based on Correlation Analysis (CA), Mutual Information (MI), and recursive feature reduction with cross-validation. To optimize the IDS performance, the security features must be carefully selected from multiple-dimensional datasets, and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets. More >

  • Open Access

    ARTICLE

    A Secure Blockchain-Based Vehicular Collision Avoidance Protocol: Detecting and Preventing Blackhole Attacks

    Mosab Manaseer1, Maram Bani Younes2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1699-1721, 2024, DOI:10.32604/csse.2024.055128 - 22 November 2024

    Abstract This work aims to examine the vulnerabilities and threats in the applications of intelligent transport systems, especially collision avoidance protocols. It focuses on achieving the availability of network communication among traveling vehicles. Finally, it aims to find a secure solution to prevent blackhole attacks on vehicular network communications. The proposed solution relies on authenticating vehicles by joining a blockchain network. This technology provides identification information and receives cryptography keys. Moreover, the ad hoc on-demand distance vector (AODV) protocol is used for route discovery and ensuring reliable node communication. The system activates an adaptive mode for monitoring More >

  • Open Access

    ARTICLE

    An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features

    Saad M. Darwish1,*, Abdul Rahman M. Sabri2, Dhafar Hamed Abd2, Adel A. Elzoghabi1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1595-1624, 2024, DOI:10.32604/csse.2024.054615 - 22 November 2024

    Abstract The number of blogs and other forms of opinionated online content has increased dramatically in recent years. Many fields, including academia and national security, place an emphasis on automated political article orientation detection. Political articles (especially in the Arab world) are different from other articles due to their subjectivity, in which the author’s beliefs and political affiliation might have a significant influence on a political article. With categories representing the main political ideologies, this problem may be thought of as a subset of the text categorization (classification). In general, the performance of machine learning models… More >

  • Open Access

    REVIEW

    A Survey of Lung Nodules Detection and Classification from CT Scan Images

    Salman Ahmed1, Fazli Subhan2,3, Mazliham Mohd Su’ud3,*, Muhammad Mansoor Alam3,4, Adil Waheed5

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1483-1511, 2024, DOI:10.32604/csse.2024.053997 - 22 November 2024

    Abstract In the contemporary era, the death rate is increasing due to lung cancer. However, technology is continuously enhancing the quality of well-being. To improve the survival rate, radiologists rely on Computed Tomography (CT) scans for early detection and diagnosis of lung nodules. This paper presented a detailed, systematic review of several identification and categorization techniques for lung nodules. The analysis of the report explored the challenges, advancements, and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning (DL) algorithm. The findings also highlighted the usefulness of DL… More >

  • Open Access

    ARTICLE

    Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10

    Trong Thua Huynh*, Hoang Thanh Nguyen, Du Thang Phu

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2281-2298, 2024, DOI:10.32604/cmc.2024.057954 - 18 November 2024

    Abstract In recent years, early detection and warning of fires have posed a significant challenge to environmental protection and human safety. Deep learning models such as Faster R-CNN (Faster Region based Convolutional Neural Network), YOLO (You Only Look Once), and their variants have demonstrated superiority in quickly detecting objects from images and videos, creating new opportunities to enhance automatic and efficient fire detection. The YOLO model, especially newer versions like YOLOv10, stands out for its fast processing capability, making it suitable for low-latency applications. However, when applied to real-world datasets, the accuracy of fire prediction is… More >

  • Open Access

    ARTICLE

    GL-YOLOv5: An Improved Lightweight Non-Dimensional Attention Algorithm Based on YOLOv5

    Yuefan Liu, Ducheng Zhang, Chen Guo*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3281-3299, 2024, DOI:10.32604/cmc.2024.057294 - 18 November 2024

    Abstract Craniocerebral injuries represent the primary cause of fatalities among riders involved in two-wheeler accidents; nevertheless, the prevalence of helmet usage among these riders remains alarmingly low. Consequently, the accurate identification of riders who are wearing safety helmets is of paramount importance. Current detection algorithms exhibit several limitations, including inadequate accuracy, substantial model size, and suboptimal performance in complex environments with small targets. To address these challenges, we propose a novel lightweight detection algorithm, termed GL-YOLOv5, which is an enhancement of the You Only Look Once version 5 (YOLOv5) framework. This model incorporates a Global DualPooling… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    ARTICLE

    AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics

    Juhwan Kim, Baehoon Son, Jihyeon Yu, Joobeom Yun*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3371-3393, 2024, DOI:10.32604/cmc.2024.057234 - 18 November 2024

    Abstract Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence (AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were… More >

  • Open Access

    ARTICLE

    Enhanced DDoS Detection Using Advanced Machine Learning and Ensemble Techniques in Software Defined Networking

    Hira Akhtar Butt1, Khoula Said Al Harthy2, Mumtaz Ali Shah3, Mudassar Hussain2,*, Rashid Amin4,*, Mujeeb Ur Rehman1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3003-3031, 2024, DOI:10.32604/cmc.2024.057185 - 18 November 2024

    Abstract Detecting sophisticated cyberattacks, mainly Distributed Denial of Service (DDoS) attacks, with unexpected patterns remains challenging in modern networks. Traditional detection systems often struggle to mitigate such attacks in conventional and software-defined networking (SDN) environments. While Machine Learning (ML) models can distinguish between benign and malicious traffic, their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent retraining. In this paper, we propose a novel DDoS detection framework that combines Machine Learning (ML) and Ensemble Learning (EL) techniques to improve DDoS attack detection and mitigation in SDN environments. Our model… More >

Displaying 1-10 on page 1 of 1889. Per Page