Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Vehicle Head and Tail Recognition Algorithm for Lightweight DCDSNet

    Chao Wang1,3, Kaijie Zhang1,2,*, Xiaoyong Yu1, Dejun Li2, Wei Xie2, Xinqiao Wang2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4451-4473, 2024, DOI:10.32604/cmc.2024.051764 - 12 September 2024

    Abstract In the model of the vehicle recognition algorithm implemented by the convolutional neural network, the model needs to compute and store a lot of parameters. Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance. Therefore, obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research. In this paper, a lightweight densely connected, and deeply separable convolutional network (DCDSNet) algorithm is proposed to achieve this goal. Visual Geometry Group (VGG) More >

  • Open Access

    ARTICLE

    Rapid and Accurate Identification of Concrete Surface Cracks via a Lightweight & Efficient YOLOv3 Algorithm

    Haoan Gu1, Kai Zhu1, Alfred Strauss2, Yehui Shi3,4, Dragoslav Sumarac5, Maosen Cao1,*

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 363-380, 2024, DOI:10.32604/sdhm.2024.042388 - 05 June 2024

    Abstract Concrete materials and structures are extensively used in transformation infrastructure and they usually bear cracks during their long-term operation. Detecting cracks using deep-learning algorithms like YOLOv3 (You Only Look Once version 3) is a new trend to pursue intelligent detection of concrete surface cracks. YOLOv3 is a typical deep-learning algorithm used for object detection. Owing to its generality, YOLOv3 lacks specific efficiency and accuracy in identifying concrete surface cracks. An improved algorithm based on YOLOv3, specialized in the rapid and accurate identification of concrete surface cracks is worthy of investigation. This study proposes a tailored… More >

  • Open Access

    ARTICLE

    Lightweight Malicious Code Classification Method Based on Improved SqueezeNet

    Li Li*, Youran Kong, Qing Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 551-567, 2024, DOI:10.32604/cmc.2023.045512 - 30 January 2024

    Abstract With the growth of the Internet, more and more business is being done online, for example, online offices, online education and so on. While this makes people’s lives more convenient, it also increases the risk of the network being attacked by malicious code. Therefore, it is important to identify malicious codes on computer systems efficiently. However, most of the existing malicious code detection methods have two problems: (1) The ability of the model to extract features is weak, resulting in poor model performance. (2) The large scale of model data leads to difficulties deploying on… More >

  • Open Access

    ARTICLE

    A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

    Kun Fang, Julong Pan*, Lingyi Li, Ruihan Xiang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 493-514, 2024, DOI:10.32604/cmc.2023.045008 - 30 January 2024

    Abstract With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance… More >

  • Open Access

    ARTICLE

    PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform

    Wenbo Li, Qi Wang*, Shang Gao

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 921-938, 2023, DOI:10.32604/iasc.2023.038257 - 29 April 2023

    Abstract Infrared target detection models are more required than ever before to be deployed on embedded platforms, which requires models with less memory consumption and better real-time performance while considering accuracy. To address the above challenges, we propose a modified You Only Look Once (YOLO) algorithm PF-YOLOv4-Tiny. The algorithm incorporates spatial pyramidal pooling (SPP) and squeeze-and-excitation (SE) visual attention modules to enhance the target localization capability. The PANet-based-feature pyramid networks (P-FPN) are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy. To lighten the network, the standard convolutions other than the backbone More >

  • Open Access

    ARTICLE

    Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net

    Chuanlong Sun, Hong Zhao*, Liang Mu, Fuliang Xu, Laiwei Lu

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 787-801, 2023, DOI:10.32604/cmes.2023.025119 - 05 January 2023

    Abstract Image semantic segmentation has become an essential part of autonomous driving. To further improve the generalization ability and the robustness of semantic segmentation algorithms, a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism (SE) and Depthwise Separable Convolution (DSC) is designed. Meanwhile, Adam-GC, an Adam optimization algorithm based on Gradient Compression (GC), is proposed to improve the training speed, segmentation accuracy, generalization ability and stability of the algorithm network. To verify and compare the effectiveness of the algorithm network proposed in this paper, the trained network model is used for experimental verification and comparative test More >

  • Open Access

    ARTICLE

    A Framework of Lightweight Deep Cross-Connected Convolution Kernel Mapping Support Vector Machines

    Qi Wang1, Zhaoying Liu1, Ting Zhang1,*, Shanshan Tu1, Yujian Li2, Muhammad Waqas3

    Journal on Artificial Intelligence, Vol.4, No.1, pp. 37-48, 2022, DOI:10.32604/jai.2022.027875 - 16 May 2022

    Abstract Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classification. However, the depth kernel mapping support vector machine does not take into account the connection of different dimensional spaces and increases the model parameters. To further improve the recognition capability of deep kernel mapping support vector machines while reducing the number of model parameters, this paper proposes a framework of Lightweight Deep Convolutional Cross-Connected Kernel Mapping Support Vector Machines (LC-CKMSVM). The framework consists More >

  • Open Access

    ARTICLE

    BEVGGC: Biogeography-Based Optimization Expert-VGG for Diagnosis COVID-19 via Chest X-ray Images

    Junding Sun1,3,#, Xiang Li1,#, Chaosheng Tang1,*, Shixin Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 729-753, 2021, DOI:10.32604/cmes.2021.016416 - 08 October 2021

    Abstract Purpose: As to January 11, 2021, coronavirus disease (COVID-19) has caused more than 2 million deaths worldwide. Mainly diagnostic methods of COVID-19 are: (i) nucleic acid testing. This method requires high requirements on the sample testing environment. When collecting samples, staff are in a susceptible environment, which increases the risk of infection. (ii) chest computed tomography. The cost of it is high and some radiation in the scan process. (iii) chest X-ray images. It has the advantages of fast imaging, higher spatial recognition than chest computed tomography. Therefore, our team chose the chest X-ray images as More >

  • Open Access

    ARTICLE

    Weed Recognition for Depthwise Separable Network Based on Transfer Learning

    Yanlei Xu1, Yuting Zhai1, Bin Zhao1, Yubin Jiao2, ShuoLin Kong1, Yang Zhou1,*, Zongmei Gao3

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 669-682, 2021, DOI:10.32604/iasc.2021.015225 - 01 March 2021

    Abstract For improving the accuracy of weed recognition under complex field conditions, a weed recognition method using depthwise separable convolutional neural network based on deep transfer learning was proposed in this study. To improve the model classification accuracy, the Xception model was refined by using model transferring and fine-tuning. Specifically, the weight parameters trained by ImageNet data set were transferred to the Xception model. Then a global average pooling layer replaced the full connection layer of the Xception model. Finally, the XGBoost classifier was added to the top layer of the model to output results. The… More >

Displaying 1-10 on page 1 of 9. Per Page