Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    PROCEEDINGS

    Marangoni Convection Shifting, Heat Accumulation and Microstructure Evolution of Laser Directed Energy Deposition

    Donghua Dai1,2,*, Yanze Li1,2, Dongdong Gu1,2,*, Wentai Zhao1,2, Yuhang Long1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012500

    Abstract Laser Directed Energy Deposition (LDED) technology was employed to fabricate internal structures within the hollow interiors of rotating parts, such as tubes and cylinders. A three-dimensional transient multiphysics model for C276 material was developed, which anticipated the impact of angular velocity from tube rotation on various aspects. This model, validated by experiments, focused on the melt pool morphology, Marangoni convection, oriented crystal microevolution, and deposited material microhardness. It was found that at 150 ms deposition, the dimensions of the melt pool stabilized. With an increase in the Peclet number, heat transfer within the melt pool… More >

  • Open Access

    PROCEEDINGS

    Influence of Synchronous-Hammer-Forging Force on the Microstructure and Properties of Laser Directed Energy Deposition 316L Components

    Yunfei Li1, Dongjiang Wu1, Fangyong Niu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012365

    Abstract The plastic deformation assisted method plays a positive role in regulating the microstructure and mechanical properties of metal components in additive manufacturing. In this work, the effect of hammer forging force on the microstructure and mechanical properties of 316L stainless steel additive components were investigated by using synchronous-hammer-forging-assisted laser directed energy deposition method. The results show that when the hammer forging force is greater than 40 N, the grain refinement effect is obvious, the grain size decreases by more than 60 %, and the maximum strength of the polar diagram decreases by more than 75 More >

  • Open Access

    PROCEEDINGS

    In-Situ Process Monitoring and Quality Evaluation for Fused Deposition Modeling with Foaming Materials

    Zhaowei Zhou1, Kaicheng Ruan1, Donghua Zhao1, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011376

    Abstract Fused deposition modeling (FDM) with foaming materials offers the capability to generate internal porous structures through in-situ foaming, imparting favorable characteristics such as weight reduction, shock absorption, thermal insulation, and sound insulation to printed objects. However, the process planning for this technology presents challenges due to the difficulty in accurately controlling the foaming rate, stemming from a complex underlying mechanism that remains poorly understood. This study introduces a multi-sensor platform for FDM with foaming materials, facilitating in-situ process monitoring of temperature field information during material modeling and quality evaluation of printed objects, i.e., abnormal foaming… More >

  • Open Access

    PROCEEDINGS

    Gas-Particle-Heat Dynamic Coupling Simulation in Directed Energy Deposition

    Lichao Zhang1, Zhao Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012849

    Abstract Powder flow can affect the temperature variations in directed energy deposition (DED). However, the direct coupling mechanism remains unknown. To solve this problem, the heat and mass transfer in additive manufacturing was simulated using dynamic coupling. The interactions between the multiphase flow and heat transfer were established. A comparison with experiment shows that the accuracy of the predictions of the numerical simulation regarding powder size distributions and temperature increases is higher than 95%. The average temperature increase of the metal powders with different weight functions was highly consistent in the simulation process. As the powder More >

  • Open Access

    PROCEEDINGS

    Investigation on Microstructural Evolution and Corrosion Resistance Improvement of E690 Steel via Underwater Laser Directed Energy Deposition

    Mingzhi Chen1, Zhandong Wang2, Guifang Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012203

    Abstract Marine environments pose severe corrosion challenges to underwater equipment, thereby leading to significant risks and demanding immediate in-situ restoration. Here we developed an underwater laser directed energy deposition (UDMD) technique to repair the E690 steel and enhance its corrosion resistance. Systematic investigations about the underwater pressure (P) and 316L stainless steel (SS316L) coatings on the microstructure, mechanical properties, and corrosion resistance of the repaired E690 steel were conducted. Results show that water cooling can refine grain, promote the formation of lath martensite, and increase dislocation density. No obvious relationship between the pressure and microstructure evolution… More >

  • Open Access

    ARTICLE

    BTG2 interference ameliorates high glucose-caused oxidative stress, cell apoptosis, and lipid deposition in HK-2 cells

    WENJUAN ZHU1, ZHENGZHENG JU2, FAN CUI2,*

    BIOCELL, Vol.48, No.9, pp. 1379-1388, 2024, DOI:10.32604/biocell.2024.052205 - 04 September 2024

    Abstract Objective: Diabetic nephropathy (DN) is a deleterious microangiopathy of diabetes, constituting a critical determinant of fatality in diabetic patients. This work is purposed to disclose the effects and modulatory mechanism of BTG anti-proliferation factor 2 (BTG2) during the pathological process of DN. Methods: BTG2 expression in kidney tissues of diabetic mice and high glucose (HG)-exposed human proximal tubular cell line HK-2 was assessed with Western blot and RT-qPCR. The diabetic mice model was constructed by streptozotocin injection and confirmed by the blood glucose level beyond 16.7 mmol/L. Hematoxylin and eosin (H&E) staining and measurement of… More >

  • Open Access

    ARTICLE

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

    Zhuo Chen1,*, Ningning Wang2, Wenbo Jin3, Dui Li1

    Energy Engineering, Vol.121, No.4, pp. 1007-1026, 2024, DOI:10.32604/ee.2023.045270 - 26 March 2024

    Abstract A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines. To ensure the safe operation of crude oil pipelines, an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines. Aiming at the shortcomings of the ENN prediction model, which easily falls into the local minimum value and weak generalization ability in the implementation process, an optimized ENN prediction model based on the IRSA is proposed. The validity of the new model was confirmed by the accurate prediction of two sets of… More > Graphic Abstract

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

  • Open Access

    ARTICLE

    The Paraffin Crystallization in Emulsified Waxy Crude Oil by Dissipative Particle Dynamics

    Ruiqiong Wang1, Tiantian Du2, Jinchen Cao2,*, Guoqiang Wang3

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 129-139, 2024, DOI:10.32604/fhmt.2024.047825 - 21 March 2024

    Abstract With the advancement of oilfield extraction technology, since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall, increasing the difficulty of crude oil extraction. In this paper, the mesoscopic dissipative particle dynamics method is used to study the mechanism of the crystallization and deposition adsorbed on the wall. The results show that in the absence of water molecules, the paraffin molecules near the substrate are deposited on the metallic surface with a horizontal morphology, while the paraffin molecules close to the fluid side are arranged in a vertical column More >

  • Open Access

    ARTICLE

    Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO2 Injection

    Shasha Feng*, Yi Liao, Weixin Liu, Jianwen Dai, Mingying Xie, Li Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 275-292, 2024, DOI:10.32604/fdmp.2023.041825 - 14 December 2023

    Abstract Asphaltene deposition is a significant problem during gas injection processes, as it can block the porous medium, the wellbore, and the involved facilities, significantly impacting reservoir productivity and ultimate oil recovery. Only a few studies have investigated the numerical modeling of this potential effect in porous media. This study focuses on asphaltene deposition due to natural gas and CO2 injection. Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model. The results indicate that the injection of natural gas exacerbates asphaltene deposition, leading to a significant… More > Graphic Abstract

    Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO<sub>2</sub> Injection

  • Open Access

    ARTICLE

    Study on Organic Fluorine Modified Cationic Acrylic Resin and its Application in Cathodic Electrodeposition Coatings

    LIJUN CHEN*, ZHEQING GONG, ZHENGRONG FU

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 157-164, 2023, DOI:10.32381/JPM.2023.40.3-4.3

    Abstract The organic fluorine modified/containing cationic acrylic resin is prepared via solution polymerization technique using hexafluorobutyl methacrylate (HFMA) along with butyl acrylate (BA), methyl methacrylate (MMA), styrene (St), dimethylaminoethyl methacrylate (DMAEMA) and hydroxy propyl methacrylate (HPMA) as the comonomers, proprylene glycol monomethyl ether (PGME) as the solvent, and 2, 2-Azo-bis-iso-butyronitrile (AIBN) as the initiator. The synthesized resin in which fluorine atom is introduced into the polymer chains. The cathodic electrodeposition (CED) coatings were prepared by mixing the synthesized resin and blocked isocyanate. The influence of the amount of organic fluorine on the resin and the resultant More >

Displaying 1-10 on page 1 of 48. Per Page